ASYMPTOTIC EXPANSIONS FOR RIEMANN–HILBERT PROBLEMS

Let Γ be a piecewise smooth contour in ℂ, which could be unbounded and may have points of self-intersection. Let V(z, N) be a 2 × 2 matrix-valued function defined on Γ, which depends on a parameter N. Consider a Riemann–Hilbert problem for a matrix-valued analytic function R(z, N) that satisfies a jump condition on the contour Γ with the jump matrix V(z, N). Assume that V(z, N) has an asymptotic expansion, as N → ∞, on Γ. An elementary proof is given for the existence of a similar type of asymptotic expansion for the matrix solution R(z, N), as n → ∞, for z ∈ ℂ\Γ. Our method makes use of only complex analysis.

[1]  Ramón A. Orive Rodríguez,et al.  Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour , 2005, J. Approx. Theory.

[2]  R. Wong,et al.  Uniform asymptotics of the Stieltjes–Wigert polynomials via the Riemann–Hilbert approach , 2006 .

[3]  Roderick Wong,et al.  Uniform asymptotics for Jacobi polynomials with varying large negative parameters— a Riemann-Hilbert approach , 2006 .

[4]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[5]  Roderick Wong,et al.  Bessel-type asymptotic expansions via the Riemann–Hilbert approach , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[7]  Александр Иванович Аптекарев,et al.  Точные константы рациональных аппроксимаций аналитических функций@@@Sharp constants for rational approximations of analytic functions , 2002 .

[8]  Xin Zhou The Riemann-Hilbert problem and inverse scattering , 1989 .

[9]  A. Martínez-Finkelshtein,et al.  Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .

[10]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[11]  Walter Van Assche,et al.  Strong Asymptotics for Relativistic Hermite Polynomials , 2003 .

[12]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[13]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .

[14]  A. Kuijlaars,et al.  Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.

[15]  M. Vanlessen,et al.  Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .

[16]  Lun Zhang,et al.  Global asymptotics of Hermite polynomials via Riemann-Hilbert approach , 2007 .

[17]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[18]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[19]  Roderick Wong,et al.  Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach* , 2007 .

[20]  E. Saff,et al.  Szego Orthogonal Polynomials with Respect to an Analytic Weight: Canonical Representation and Strong Asymptotics , 2005, math/0502300.

[21]  Percy Deift Four Lectures on Random Matrix Theory , 2003 .

[22]  A. B. J. Kuijlaars,et al.  A Riemann-Hilbert problem for biorthogonal polynomials , 2003 .

[23]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[24]  Roderick Wong,et al.  Uniform Asymptotics for Orthogonal Polynomials with Exponential Weights—the Riemann–Hilbert Approach , 2005 .