Uncertainty dynamics and predictability in chaotic systems
暂无分享,去创建一个
Leonard A. Smith | Klaus Fraedrich | Christine Ziehmann | K. Fraedrich | C. Ziehmann | L. Smith | Leonard A. Smith | Klaus Fraedrich
[1] P. Read,et al. Quasi-periodic and chaotic flow regimes in a thermally driven, rotating fluid annulus , 1992, Journal of Fluid Mechanics.
[2] Leonard A. Smith,et al. Accountability and internal consistency in ensemble formation , 1997 .
[3] Jürgen Kurths,et al. The bootstrap and Lyapunov exponents in deterministic chaos , 1999 .
[4] J. Kurths,et al. An attractor in a solar time series , 1987 .
[5] Leonard A. Smith. Local optimal prediction: exploiting strangeness and the variation of sensitivity to initial condition , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[6] Anne E. Trefethen,et al. Hydrodynamic Stability Without Eigenvalues , 1993, Science.
[7] J. Greene,et al. The calculation of Lyapunov spectra , 1987 .
[8] Isla Gilmour. Nonlinear model evaluation : ɩ-shadowing, probabilistic prediction and weather forecasting , 1999 .
[9] P. L. Houtekamer,et al. Prediction Experiments with Two-Member Ensembles , 1994 .
[10] C. Nicolis,et al. Short-range predict-ability of the atmosphere: mechanism for superexponential error growth , 1995 .
[11] Farmer,et al. Predicting chaotic time series. , 1987, Physical review letters.
[12] H. M. van den Dool,et al. On the Weights for an Ensemble-Averaged 6–10-Day Forecast , 1994 .
[13] Robert M. May,et al. Necessity and chance: deterministic chaos in ecology and evolution , 1995 .
[14] Roberto Buizza,et al. The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .
[15] T. Palmer. Extended-range atmospheric prediction and the Lorenz model , 1993 .
[16] Eugenia Kalnay,et al. Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .
[17] C. Nicolis. Probabilistic Aspects of Error Growth In Atmospheric Dynamics , 1992 .
[18] Shigeo Yoden,et al. Finite-Time Lyapunov Stability Analysis and Its Application to Atmospheric Predictability , 1993 .
[19] James A. Yorke,et al. Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .
[20] Shigeo Yoden,et al. A Relationship between Local Error Growth and Quasi-stationary States: Case Study in the Lorenz System , 1991 .
[21] O. Rössler. An equation for continuous chaos , 1976 .
[22] Gottfried Jetschke,et al. Mathematik der Selbstorganisation , 1989 .
[23] A. Trevisan. Impact of transient error growth on global average predictability measures , 1993 .
[24] Franco Molteni,et al. Predictability and finite‐time instability of the northern winter circulation , 1993 .
[25] Anna Trevisan,et al. Transient error growth and local predictability: a study in the Lorenz system , 1995 .
[26] Jeffrey L. Anderson,et al. Skill and Return of Skill in Dynamic Extended-Range Forecasts , 1994 .
[27] Brian F. Farrell,et al. Small Error Dynamics and the Predictability of Atmospheric Flows. , 1990 .
[28] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[29] George Sugihara,et al. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.
[30] Zoltan Toth,et al. Estimation of Atmospheric Predictability by Circulation Analogs , 1991 .
[31] H. Tennekes,et al. Karl Popper and the Accountability of Numerical Weather Forecasting , 1992 .
[32] T. Palmer. Medium and extended range predictability and stability of the Pacific/North American mode , 2006 .
[33] Howell Tong,et al. On Multi‐Step Non‐Linear Least Squares Prediction , 1988 .
[34] Tim N. Palmer,et al. A nonlinear dynamical perspective on climate change , 1993 .
[35] Leonard A. Smith. Accountability and error in ensemble prediction of baroclinic flows , 1995 .
[36] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[37] Roberto Buizza,et al. Optimal perturbation time evolution and sensitivity of ensemble prediction to perturbation amplitude , 1995 .
[38] Alistair Mees. PARSIMONIOUS DYNAMICAL RECONSTRUCTION , 1993 .
[39] Martin Casdagli,et al. Nonlinear prediction of chaotic time series , 1989 .
[40] K. Fraedrich,et al. Ein internes Vorhersagbarkeitsexperiment im Lorenz-Modell , 1995 .
[41] O. Talagrand,et al. Short-range evolution of small perturbations in a barotropic model , 1988 .
[42] Hermann Haken,et al. Quantities describing local properties of chaotic attractors , 1985 .
[43] Henry D. I. Abarbanel,et al. Variation of Lyapunov exponents on a strange attractor , 1991 .
[44] Jon M. Nese. Quantifying local predictability in phase space , 1989 .
[45] E. Lorenz. A study of the predictability of a 28-variable atmospheric model , 1965 .
[46] H. V. D. Dool,et al. Searching for analogues, how long must we wait? , 1994 .
[47] Leonard A. Smith. Identification and prediction of low dimensional dynamics , 1992 .
[48] K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .
[49] S. Grossmann,et al. Predictability portraits for chaotic motions , 1991 .
[50] Bruno Eckhardt,et al. Local Lyapunov exponents in chaotic systems , 1993 .
[51] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[52] Jan Barkmeijer. Constructing Fast-Growing Perturbations for the Nonlinear Regime , 1996 .
[53] P. D. Thompson,et al. Uncertainty of Initial State as a Factor in the Predictability of Large Scale Atmospheric Flow Patterns , 1957 .
[54] D. W. Moore,et al. A Thermally Excited Non-Linear Oscillator , 1966 .
[55] Roberto Benzi,et al. A Possible Measure of Local Predictability , 1989 .