Citrobacter rodentium is an Unstable Pathogen Showing Evidence of Significant Genomic Flux
暂无分享,去创建一个
Thomas M. Keane | Nicola K. Petty | S. Nair | M. Quail | S. Clare | G. Dougan | C. Churcher | T. Feltwell | D. Harris | J. Parkhill | R. Rance | T. Keane | N. Thomson | G. Salmond | J. Choudhary | D. Willey | Lu Yu | D. Goulding | N. Lennard | Craig Corton | D. Pickard | S. Wiles | R. Kingsley | A. Toribio | M. Fookes | G. Frankel | R. Monson | Richard R Bulgin | Kevin Roberts | Kevin J. Roberts | Richard Rance | Nicola J Lennard | Maria Fookes | Rita E. Monson
[1] Mitchell J. Sullivan,et al. Easyfig: a genome comparison visualizer , 2011, Bioinform..
[2] Julian Parkhill,et al. Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.
[3] Matthew Berriman,et al. BamView: viewing mapped read alignment data in the context of the reference sequence , 2010, Bioinform..
[4] Julian Parkhill,et al. The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli , 2009, Journal of bacteriology.
[5] Leonard J Foster,et al. A Comprehensive Proteomic Analysis of the Type III Secretome of Citrobacter rodentium* , 2009, The Journal of Biological Chemistry.
[6] J. Parkhill,et al. Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement , 2009, BMC Genomics.
[7] Thomas M. Keane,et al. A simple method for directional transcriptome sequencing using Illumina technology , 2009, Nucleic acids research.
[8] Tetsuya Hayashi,et al. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. , 2009, Genome research.
[9] Michael A Quail,et al. Improved Protocols for the Illumina Genome Analyzer Sequencing System , 2009, Current protocols in human genetics.
[10] Samuel A. Assefa,et al. A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi , 2009, PLoS genetics.
[11] Thomas M. Keane,et al. ABACAS: algorithm-based automatic contiguation of assembled sequences , 2009, Bioinform..
[12] Y. Bertin,et al. Genomic analysis of the PAI ICL3 locus in pathogenic LEE-negative Shiga toxin-producing Escherichia coli and Citrobacter rodentium. , 2009, Microbiology.
[13] Matthew Berriman,et al. DNAPlotter: circular and linear interactive genome visualization , 2008, Bioinform..
[14] Julian Parkhill,et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.
[15] Georgios S. Vernikos,et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. , 2008, Genome research.
[16] B. Birren,et al. Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.
[17] C. Rosenberger,et al. Flagellin-Dependent and -Independent Inflammatory Responses following Infection by Enteropathogenic Escherichia coli and Citrobacter rodentium , 2008, Infection and Immunity.
[18] Nicola K. Petty,et al. A generalized transducing phage for the murine pathogen Citrobacter rodentium. , 2007, Microbiology.
[19] I. Connerton,et al. Genome Dynamics of Campylobacter jejuni in Response to Bacteriophage Predation , 2007, PLoS pathogens.
[20] A. Mellmann,et al. Prevalence, virulence profiles, and clinical significance of Shiga toxin-negative variants of enterohemorrhagic Escherichia coli O157 infection in humans. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[21] A. Mellmann,et al. Shiga Toxin Gene Loss and Transfer In Vitro and In Vivo during Enterohemorrhagic Escherichia coli O26 Infection in Humans , 2007, Applied and Environmental Microbiology.
[22] Nicola K. Petty,et al. A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. , 2006, Microbiology.
[23] D. Falush,et al. Genomic Changes during Chronic Helicobacter pylori Infection , 2006, Journal of bacteriology.
[24] Peter C. Fineran,et al. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. , 2005, Microbiology.
[25] G. Dougan,et al. Citrobacter rodentium of mice and man , 2005, Cellular microbiology.
[26] A. Mellmann,et al. Enterohemorrhagic Escherichia coli in human infection: in vivo evolution of a bacterial pathogen. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[27] Matthew Berriman,et al. ACT: the Artemis comparison tool , 2005, Bioinform..
[28] G. Dougan,et al. Emergence of a ‘hyperinfectious’ bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract , 2005, Cellular microbiology.
[29] Mark J. Pallen,et al. The Flag-2 Locus, an Ancestral Gene Cluster, Is Potentially Associated with a Novel Flagellar System from Escherichia coli , 2005, Journal of bacteriology.
[30] M. Woodward,et al. Attaching-effacing Bacteria in Animals , 2004, Journal of Comparative Pathology.
[31] S. Clare,et al. Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium , 2004, Cellular microbiology.
[32] K. Dietz,et al. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. , 2004, The Journal of infectious diseases.
[33] J. Lengeler. Analysis of mutations affecting the dissimilation of galactitol (dulcitol) in Escherichia coli K12 , 1977, Molecular and General Genetics MGG.
[34] K. Hughes,et al. The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL , 2003, Molecular microbiology.
[35] B. Barrell,et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica , 2003, Nature Genetics.
[36] H. Ackermann,et al. Bacteriophage observations and evolution. , 2003, Research in microbiology.
[37] S. Casjens,et al. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. , 2002, Journal of molecular biology.
[38] R. Wilson,et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.
[39] Kim Rutherford,et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.
[40] M. Simmonds,et al. Genome sequence of Yersinia pestis, the causative agent of plague , 2001, Nature.
[41] J. Mullikin,et al. SSAHA: a fast search method for large DNA databases. , 2001, Genome research.
[42] B. Finlay,et al. Locus of Enterocyte Effacement from Citrobacter rodentium: Sequence Analysis and Evidence for Horizontal Transfer among Attaching and Effacing Pathogens , 2001, Infection and Immunity.
[43] D. Schauer,et al. Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. , 2001, Microbes and infection.
[44] C. Sasakawa,et al. Comparison of bacteriological, genetic and pathological characters between Escherichia coli O115a,c:K(B) and Citrobacter rodentium. , 2001, Experimental animals.
[45] B. Barrell,et al. Massive gene decay in the leprosy bacillus , 2001, Nature.
[46] B. Barrell,et al. Massive gene decay in the leprosy , 2001 .
[47] A. Steigerwalt,et al. Citrobacter rodentium, the Causative Agent of Transmissible Murine Colonic Hyperplasia, Exhibits Clonality: Synonymy of C. rodentium and Mouse-PathogenicEscherichia coli , 2000, Journal of Clinical Microbiology.
[48] Kim Rutherford,et al. Artemis: sequence visualization and annotation , 2000, Bioinform..
[49] Shu-Lin Liu,et al. Chromosomal rearrangements in enteric bacteria (minireview) , 1998, Electrophoresis.
[50] S L Liu,et al. Chromosomal rearrangements in enteric bacteria. , 1998, Electrophoresis.
[51] N. W. Davis,et al. The complete genome sequence of Escherichia coli K-12. , 1997, Science.
[52] J. Lobry. Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.
[53] R. Macnab,et al. Flagella and motility , 1996 .
[54] A. Steigerwalt,et al. Genetic and biochemical characterization of Citrobacter rodentium sp. nov , 1995, Journal of clinical microbiology.
[55] A. Steigerwalt,et al. Classification of citrobacteria by DNA hybridization: designation of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. , 1993, International journal of systematic bacteriology.
[56] S. Falkow,et al. Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia , 1993, Infection and immunity.
[57] T. Whittam,et al. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. , 1993, Journal of medical microbiology.
[58] T. Mitsuoka,et al. Genetic control in the susceptibility of germfree inbred mice to infection by Escherichia coli O115a,c:K(B) , 1988, Infection and immunity.
[59] M. Levine,et al. The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. , 1985, The Journal of infectious diseases.
[60] S. T. Liu,et al. Rapid procedure for detection and isolation of large and small plasmids , 1981, Journal of bacteriology.
[61] K. Ueda,et al. Effect of Intestinal Flora on Megaenteron of Mice , 1978, Microbiology and immunology.
[62] G. L. Coleman,et al. Transmissible Murine Colonic Hyperplasia , 1978, Veterinary pathology.
[63] S. Barthold,et al. Dietary, bacterial, and host genetic interactions in the pathogenesis of transmissible murine colonic hyperplasia. , 1977, Laboratory animal science.
[64] G. L. Coleman,et al. The etiology of transmissible murine colonic hyperplasia. , 1976, Laboratory animal science.
[65] R. Kovatch,et al. Colitis in mice with a high incidence of rectal prolapse. , 1974, Laboratory animal science.
[66] H. Echols,et al. Establishment and Maintenance of Repression by Bacteriophage Lambda: The Role of the cI, cII, and cIII Proteins , 1971 .
[67] Y. Isobe,et al. Infectious megaenteron of mice. I. Manifestation and pathological observation. , 1969, Japanese journal of medical science & biology.
[68] Flynn Rj,et al. CITROBACTER FREUNDII ASSOCIATED WITH DIARRHEA IN A LABORATORY MICE. , 1965 .
[69] R. Flynn,et al. CITROBACTER FREUNDII ASSOCIATED WITH DIARRHEA IN A LABORATORY MICE. , 1965, Laboratory animal care.