Citrobacter rodentium is an Unstable Pathogen Showing Evidence of Significant Genomic Flux

Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E) lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease.

[1]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[2]  Julian Parkhill,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[3]  Matthew Berriman,et al.  BamView: viewing mapped read alignment data in the context of the reference sequence , 2010, Bioinform..

[4]  Julian Parkhill,et al.  The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli , 2009, Journal of bacteriology.

[5]  Leonard J Foster,et al.  A Comprehensive Proteomic Analysis of the Type III Secretome of Citrobacter rodentium* , 2009, The Journal of Biological Chemistry.

[6]  J. Parkhill,et al.  Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement , 2009, BMC Genomics.

[7]  Thomas M. Keane,et al.  A simple method for directional transcriptome sequencing using Illumina technology , 2009, Nucleic acids research.

[8]  Tetsuya Hayashi,et al.  Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. , 2009, Genome research.

[9]  Michael A Quail,et al.  Improved Protocols for the Illumina Genome Analyzer Sequencing System , 2009, Current protocols in human genetics.

[10]  Samuel A. Assefa,et al.  A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi , 2009, PLoS genetics.

[11]  Thomas M. Keane,et al.  ABACAS: algorithm-based automatic contiguation of assembled sequences , 2009, Bioinform..

[12]  Y. Bertin,et al.  Genomic analysis of the PAI ICL3 locus in pathogenic LEE-negative Shiga toxin-producing Escherichia coli and Citrobacter rodentium. , 2009, Microbiology.

[13]  Matthew Berriman,et al.  DNAPlotter: circular and linear interactive genome visualization , 2008, Bioinform..

[14]  Julian Parkhill,et al.  Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.

[15]  Georgios S. Vernikos,et al.  Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. , 2008, Genome research.

[16]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[17]  C. Rosenberger,et al.  Flagellin-Dependent and -Independent Inflammatory Responses following Infection by Enteropathogenic Escherichia coli and Citrobacter rodentium , 2008, Infection and Immunity.

[18]  Nicola K. Petty,et al.  A generalized transducing phage for the murine pathogen Citrobacter rodentium. , 2007, Microbiology.

[19]  I. Connerton,et al.  Genome Dynamics of Campylobacter jejuni in Response to Bacteriophage Predation , 2007, PLoS pathogens.

[20]  A. Mellmann,et al.  Prevalence, virulence profiles, and clinical significance of Shiga toxin-negative variants of enterohemorrhagic Escherichia coli O157 infection in humans. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[21]  A. Mellmann,et al.  Shiga Toxin Gene Loss and Transfer In Vitro and In Vivo during Enterohemorrhagic Escherichia coli O26 Infection in Humans , 2007, Applied and Environmental Microbiology.

[22]  Nicola K. Petty,et al.  A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. , 2006, Microbiology.

[23]  D. Falush,et al.  Genomic Changes during Chronic Helicobacter pylori Infection , 2006, Journal of bacteriology.

[24]  Peter C. Fineran,et al.  A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. , 2005, Microbiology.

[25]  G. Dougan,et al.  Citrobacter rodentium of mice and man , 2005, Cellular microbiology.

[26]  A. Mellmann,et al.  Enterohemorrhagic Escherichia coli in human infection: in vivo evolution of a bacterial pathogen. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[27]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[28]  G. Dougan,et al.  Emergence of a ‘hyperinfectious’ bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract , 2005, Cellular microbiology.

[29]  Mark J. Pallen,et al.  The Flag-2 Locus, an Ancestral Gene Cluster, Is Potentially Associated with a Novel Flagellar System from Escherichia coli , 2005, Journal of bacteriology.

[30]  M. Woodward,et al.  Attaching-effacing Bacteria in Animals , 2004, Journal of Comparative Pathology.

[31]  S. Clare,et al.  Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium , 2004, Cellular microbiology.

[32]  K. Dietz,et al.  Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. , 2004, The Journal of infectious diseases.

[33]  J. Lengeler Analysis of mutations affecting the dissimilation of galactitol (dulcitol) in Escherichia coli K12 , 1977, Molecular and General Genetics MGG.

[34]  K. Hughes,et al.  The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL , 2003, Molecular microbiology.

[35]  B. Barrell,et al.  Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica , 2003, Nature Genetics.

[36]  H. Ackermann,et al.  Bacteriophage observations and evolution. , 2003, Research in microbiology.

[37]  S. Casjens,et al.  Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. , 2002, Journal of molecular biology.

[38]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[39]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[40]  M. Simmonds,et al.  Genome sequence of Yersinia pestis, the causative agent of plague , 2001, Nature.

[41]  J. Mullikin,et al.  SSAHA: a fast search method for large DNA databases. , 2001, Genome research.

[42]  B. Finlay,et al.  Locus of Enterocyte Effacement from Citrobacter rodentium: Sequence Analysis and Evidence for Horizontal Transfer among Attaching and Effacing Pathogens , 2001, Infection and Immunity.

[43]  D. Schauer,et al.  Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. , 2001, Microbes and infection.

[44]  C. Sasakawa,et al.  Comparison of bacteriological, genetic and pathological characters between Escherichia coli O115a,c:K(B) and Citrobacter rodentium. , 2001, Experimental animals.

[45]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[46]  B. Barrell,et al.  Massive gene decay in the leprosy , 2001 .

[47]  A. Steigerwalt,et al.  Citrobacter rodentium, the Causative Agent of Transmissible Murine Colonic Hyperplasia, Exhibits Clonality: Synonymy of C. rodentium and Mouse-PathogenicEscherichia coli , 2000, Journal of Clinical Microbiology.

[48]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[49]  Shu-Lin Liu,et al.  Chromosomal rearrangements in enteric bacteria (minireview) , 1998, Electrophoresis.

[50]  S L Liu,et al.  Chromosomal rearrangements in enteric bacteria. , 1998, Electrophoresis.

[51]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[52]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[53]  R. Macnab,et al.  Flagella and motility , 1996 .

[54]  A. Steigerwalt,et al.  Genetic and biochemical characterization of Citrobacter rodentium sp. nov , 1995, Journal of clinical microbiology.

[55]  A. Steigerwalt,et al.  Classification of citrobacteria by DNA hybridization: designation of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. , 1993, International journal of systematic bacteriology.

[56]  S. Falkow,et al.  Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia , 1993, Infection and immunity.

[57]  T. Whittam,et al.  Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. , 1993, Journal of medical microbiology.

[58]  T. Mitsuoka,et al.  Genetic control in the susceptibility of germfree inbred mice to infection by Escherichia coli O115a,c:K(B) , 1988, Infection and immunity.

[59]  M. Levine,et al.  The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. , 1985, The Journal of infectious diseases.

[60]  S. T. Liu,et al.  Rapid procedure for detection and isolation of large and small plasmids , 1981, Journal of bacteriology.

[61]  K. Ueda,et al.  Effect of Intestinal Flora on Megaenteron of Mice , 1978, Microbiology and immunology.

[62]  G. L. Coleman,et al.  Transmissible Murine Colonic Hyperplasia , 1978, Veterinary pathology.

[63]  S. Barthold,et al.  Dietary, bacterial, and host genetic interactions in the pathogenesis of transmissible murine colonic hyperplasia. , 1977, Laboratory animal science.

[64]  G. L. Coleman,et al.  The etiology of transmissible murine colonic hyperplasia. , 1976, Laboratory animal science.

[65]  R. Kovatch,et al.  Colitis in mice with a high incidence of rectal prolapse. , 1974, Laboratory animal science.

[66]  H. Echols,et al.  Establishment and Maintenance of Repression by Bacteriophage Lambda: The Role of the cI, cII, and cIII Proteins , 1971 .

[67]  Y. Isobe,et al.  Infectious megaenteron of mice. I. Manifestation and pathological observation. , 1969, Japanese journal of medical science & biology.

[68]  Flynn Rj,et al.  CITROBACTER FREUNDII ASSOCIATED WITH DIARRHEA IN A LABORATORY MICE. , 1965 .

[69]  R. Flynn,et al.  CITROBACTER FREUNDII ASSOCIATED WITH DIARRHEA IN A LABORATORY MICE. , 1965, Laboratory animal care.