A finite-volume method for deformation analysis of woven fabrics

[1]  M. Wheel,et al.  A finite volume method for analysing the bending deformation of thick and thin plates , 1997 .

[2]  Timothy G. Clapp,et al.  Finite-element modeling and control of flexible fabric parts , 1996, IEEE Computer Graphics and Applications.

[3]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[4]  M. A. Wheel A finite-volume approach to the stress analysis of pressurized axisymmetric structures , 1996 .

[5]  H. Saunders Book Reviews : FINITE ELEMENT ANALYSIS FUNDAMENTALS R.H. Gallagher Prentice Hall, Inc., Englewood Cliffs, New Jersey (1975) , 1977 .

[6]  Muthu Govindaraj,et al.  A Physically Based Model of Fabric Drape Using Flexible Shell Theory , 1995 .

[7]  Wolfgang Straßer,et al.  A fast, flexible, particle-system model for cloth draping , 1996, IEEE Computer Graphics and Applications.

[8]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[9]  David E. Breen,et al.  A particle-based computational model of cloth draping behavior , 1991 .

[10]  Richard L. Grimsdale,et al.  Computer graphics techniques for modeling cloth , 1996, IEEE Computer Graphics and Applications.

[11]  Jinlian Hu,et al.  Computational fabric mechanics: present status and future trends , 1996 .

[12]  Chris Bailey,et al.  A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh , 1995 .

[13]  W. C. Schnobrich,et al.  The Lumped-Parameter or Bar–Node Model Approach to Thin-Shell Analysis , 1973 .

[14]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[15]  Sanjay G. Dhande,et al.  Geometric Modeling of Draped Fabric Surfaces , 1993, ICCG.

[16]  T. Kang,et al.  Drape Simulation of Woven Fabric by Using the Finite-element Method , 1995 .

[17]  Billie J. Collier,et al.  Drape Prediction by Means of Finite-element Analysis , 1991 .

[18]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[19]  S. Muzaferija,et al.  Finite volume method for stress analysis in complex domains , 1994 .

[20]  Chris Bailey,et al.  A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh , 1991 .

[21]  Muthu Govindaraj,et al.  A Parametric Study of Fabric Drape , 1996 .

[22]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[23]  Helmut E. Bez,et al.  A simple finite element model for cloth drape simulation , 1996 .

[24]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[25]  George K Stylios,et al.  Modelling the dynamic drape of fabrics on synthetic humans: a physical, lumped‐parameter model , 1995 .

[26]  Jerry Weil,et al.  The synthesis of cloth objects , 1986, SIGGRAPH.

[27]  I. Demirdžić,et al.  Finite volume method for thermo-elasto-plastic stress analysis , 1993 .

[28]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[29]  George K Stylios,et al.  Modelling the dynamic drape of garments on synthetic humans in a virtual fashion show , 1996 .

[30]  Daniel Thalmann,et al.  Cloth Animation with Self-Collision Detection , 1991, Modeling in Computer Graphics.

[31]  Miguel Cervera,et al.  A finite volume format for structural mechanics , 1994 .

[32]  Daniel Thalmann,et al.  Dressing animated synthetic actors with complex deformable clothes , 1992, SIGGRAPH.

[33]  David E. Breen,et al.  A Particle-Based Model for Simulating the Draping Behavior of Woven Cloth , 1993 .

[34]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[35]  G. Steven,et al.  A Study of Fabric Deformation Using Nonlinear Finite Elements , 1995 .

[36]  D. W. Lloyd The Analysis of Complex Fabric Deformations , 1980 .