A combined approximating and interpolating ternary 4-point subdivision scheme

Abstract In this paper, a new combined approximating and interpolating ternary 4-point subdivision scheme with multiple parameters is proposed. A set of nice properties, such as support, continuity and polynomial generation, are briefly discussed. The new combined scheme not only contains a lot of classical ternary schemes as special cases, but also generates brand-new ternary schemes. Compared to other approximating subdivision schemes, limit curves generated by the new scheme are more consistent with the corresponding control polygons and keep detail features better. Examples are given to show the effectiveness of the scheme. Furthermore, fractal property is analyzed and fractal curves are also given.

[1]  E. Santi,et al.  Refinable ripplets with dilation 3 , 2011 .

[2]  Xiaonan Luo,et al.  A combined approximating and interpolating subdivision scheme with C2 continuity , 2012, Appl. Math. Lett..

[3]  Faheem Khan,et al.  The Odd-Point Ternary Approximating Schemes , 2011, Am. J. Comput. Math..

[4]  L. Gori,et al.  On a class of shape-preserving refinable functions with dilation 3 , 2013, J. Comput. Appl. Math..

[5]  Shahid S. Siddiqi,et al.  Ternary 2N-point Lagrange subdivision schemes , 2014, Appl. Math. Comput..

[6]  G. Mustafa,et al.  Unification and Application of 3-point Approximating Subdivision Schemes of Varying Arity , 2012 .

[7]  Carolina Vittoria Beccari,et al.  A unified framework for interpolating and approximating univariate subdivision , 2010, Appl. Math. Comput..

[8]  Rong Gu,et al.  SHadoop: Improving MapReduce performance by optimizing job execution mechanism in Hadoop clusters , 2014, J. Parallel Distributed Comput..

[9]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[10]  Lucia Romani,et al.  Complete characterization of the regions of C2 and C3 convergence of combined ternary 4-point subdivision schemes , 2016, Appl. Math. Lett..

[11]  Lucia Romani,et al.  Approximation order and approximate sum rules in subdivision , 2016, J. Approx. Theory.

[12]  Hongchan Zheng,et al.  Constructing 2n-1-Point Ternary Interpolatory Subdivision Schemes by Using Variation of Constants , 2009, 2009 International Conference on Computational Intelligence and Software Engineering.

[13]  Jieqing Tan,et al.  A new four-point shape-preserving C3 subdivision scheme , 2014, Comput. Aided Geom. Des..

[14]  Nira Dyn,et al.  Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.

[15]  Shahid S. Siddiqi,et al.  Improved binary four point subdivision scheme and new corner cutting scheme , 2010, Comput. Math. Appl..

[16]  M. F. Hassan,et al.  Ternary and three-point univariate subdivision schemes , 2001 .

[17]  Adi Levin,et al.  Interpolating nets of curves by smooth subdivision surfaces , 1999, SIGGRAPH.

[18]  Jian-ao Lian On a-ary Subdivision for Curve Design: I. 4-Point and 6-Point Interpolatory Schemes , 2008 .

[19]  Carolina Vittoria Beccari,et al.  Shape controlled interpolatory ternary subdivision , 2009, Appl. Math. Comput..

[20]  Shahid S. Siddiqi,et al.  A family of ternary subdivision schemes for curves , 2015, Appl. Math. Comput..

[21]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[22]  Neil A. Dodgson,et al.  An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..

[23]  Byung-Gook Lee,et al.  Stationary subdivision schemes reproducing polynomials , 2006, Comput. Aided Geom. Des..

[24]  Shahid S. Siddiqi,et al.  A combined binary 6-point subdivision scheme , 2015, Appl. Math. Comput..

[25]  Jieqing Tan,et al.  A Binary Five-point Relaxation Subdivision Scheme ⋆ , 2013 .

[26]  Kai Hormann,et al.  Polynomial reproduction for univariate subdivision schemes of any arity , 2011, J. Approx. Theory.

[27]  Zhongxuan Luo,et al.  On interpolatory subdivision from approximating subdivision scheme , 2013, Appl. Math. Comput..

[28]  Shahid S. Siddiqi,et al.  A new three-point approximating C2 subdivision scheme , 2007, Appl. Math. Lett..

[29]  Adi Levin Combined subdivision schemes for the design of surfaces satisfying boundary conditions , 1999, Comput. Aided Geom. Des..