Analysis of sex‐linked sequences supports a new mammal species in Europe

European mammals have been the focus of particularly detailed taxonomic studies by traditional morphological methods. However, DNA analyses have the potential to reveal additional, cryptic species. We describe two highly divergent evolutionary lineages within a small Eurasian mammal, the field vole (Microtus agrestis). We show that the two lineages can be detected not only with maternally (mitochondrial DNA), but also with paternally (Y chromosome) and biparentally (X chromosome) inherited DNA sequences. Reciprocal monophyly of all genealogies and their congruent geographical distributions is consistent with reproductive isolation. Our results suggest that the field vole should be reclassified as two separate species.

[1]  M. Nei Molecular Evolutionary Genetics , 1987 .

[2]  M. Hammer,et al.  Human population structure and its effects on sampling Y chromosome sequence variation. , 2003, Genetics.

[3]  Chris Tyler-Smith,et al.  The human Y chromosome: an evolutionary marker comes of age , 2003, Nature Reviews Genetics.

[4]  J. Chaline,et al.  Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data , 2000 .

[5]  O. V. Helversen,et al.  Cryptic diversity in European bats , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  H. Ellegren,et al.  Low levels of nucleotide diversity in mammalian Y chromosomes. , 2003, Molecular biology and evolution.

[7]  J. Marzluff,et al.  Cryptic genetic variation and paraphyly in ravens , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  B. Riddle,et al.  Cryptic vicariance in the historical assembly of a Baja California peninsular desert biota. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Searle,et al.  Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences , 2002, Molecular ecology.

[10]  R. Hudson,et al.  MATHEMATICAL CONSEQUENCES OF THE GENEALOGICAL SPECIES CONCEPT , 2002, Evolution; international journal of organic evolution.

[11]  K. Fredga,et al.  A CONTACT ZONE WITH NONCOINCIDENT CLINES FOR SEX‐SPECIFIC MARKERS IN THE FIELD VOLE (MICROTUS AGRESTIS) , 1997, Evolution; international journal of organic evolution.

[12]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[13]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[14]  T. Ashley,et al.  The behavior during pachynema of a normal and an inverted Y chromosome in Microtus agrestis. , 2008, Hereditas.

[15]  J. Searle,et al.  A highly divergent mitochondrial DNA lineage of Microtus agrestis in southern Europe , 2004, Heredity.

[16]  R. Baker,et al.  A TEST OF THE GENETIC SPECIES CONCEPT: CYTOCHROME-b SEQUENCES AND MAMMALS , 2001 .

[17]  N. Georgiadis,et al.  Genetic Evidence for Two Species of Elephant in Africa , 2001, Science.

[18]  J. Hausser,et al.  ETUDE BIOMETRIQUE DES MACHOIRES CHEZ LES SOREX DU GROUPE ARANEUS EN EUROPE CONTINENTALE (MAMMALIA, INSECTIVORA) , 1974 .

[19]  Jan Zima,et al.  The Atlas of European Mammals , 1999 .

[20]  PATERNAL, MATERNAL, AND BIPARENTAL MOLECULAR MARKERS PROVIDE UNIQUE WINDOWS ONTO THE EVOLUTIONARY HISTORY OF MACAQUE MONKEYS , 2003, Evolution; international journal of organic evolution.

[21]  S. Pääbo,et al.  Extensive nuclear DNA sequence diversity among chimpanzees. , 1999, Science.

[22]  M. Hammer,et al.  High levels of Y-chromosome nucleotide diversity in the genus Pan , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jody Hey,et al.  The study of structured populations — new hope for a difficult and divided science , 2003, Nature Reviews Genetics.

[24]  H. Ellegren,et al.  Y chromosome conserved anchored tagged sequences (YCATS) for the analysis of mammalian male‐specific DNA , 2002, Molecular ecology.

[25]  K. Wollenberg,et al.  Phylogenetics and the origin of species. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Nichols,et al.  Gene trees and species trees are not the same. , 2001, Trends in ecology & evolution.

[27]  C. Brunhoff,et al.  Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. , 2004, Molecular phylogenetics and evolution.

[28]  Stephen F. Schaffner,et al.  The X chromosome in population genetics , 2004, Nature Reviews Genetics.

[29]  R. Wayne,et al.  DNA answers the call of pipistrelle bat species , 1997, Nature.

[30]  J. Avise,et al.  Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  L. Excoffier,et al.  Mammalian population genetics: why not Y? , 2002 .

[32]  P. Donnelly,et al.  A new statistical method for haplotype reconstruction from population data. , 2001, American journal of human genetics.

[33]  S. Pääbo,et al.  Great ape DNA sequences reveal a reduced diversity and an expansion in humans , 2001, Nature Genetics.

[34]  Parvaneh Saeedi,et al.  A physical map of the mouse genome , 2002, Nature.

[35]  E. Barratt,et al.  Can skull morphology be used to predict ecological relationships between bat species? A test using two cryptic species of pipistrelle , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  M. Nachman Patterns of DNA variability at X-linked loci in Mus domesticus. , 1997, Genetics.

[37]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[38]  H. Tegelström,et al.  Colonization history of north European field voles (Microtus agrestis) revealed by mitochondrial DNA , 1995, Molecular ecology.

[39]  R. Hudson,et al.  STOCHASTICITY OVERRULES THE “THREE-TIMES RULE”: GENETIC DRIFT, GENETIC DRAFT, AND COALESCENCE TIMES FOR NUCLEAR LOCI VERSUS MITOCHONDRIAL DNA , 2003, Evolution; international journal of organic evolution.

[40]  M. Nachman,et al.  Polymorphism and divergence at the 5' flanking region of the sex-determining locus, Sry, in mice. , 1994, Molecular biology and evolution.

[41]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.

[42]  M. Nei,et al.  Mathematical model for studying genetic variation in terms of restriction endonucleases. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Noah A. Rosenberg,et al.  Genealogical trees, coalescent theory and the analysis of genetic polymorphisms , 2002, Nature Reviews Genetics.