Tangible reduction in learning sample complexity with large classical samples and small quantum system

Quantum computation requires large classical datasets to be embedded into quantum states in order to exploit quantum parallelism. However, this embedding requires considerable resources in general. It would therefore be desirable to avoid it, if possible, for noisy intermediate-scale quantum (NISQ) implementation. Accordingly, we consider a classical-quantum hybrid architecture, which allows large classical input data, with a relatively small-scale W. Song Department of Physics, Hanyang University, Seoul 04763, Korea Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea M. Wieśniak Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-308 Gdańsk, Poland N. Liu Institute of Natural Science, Shanghai Jiao Tong University, Shanghai 200240, China Ministry of Education, Key Laboratory in Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai 200240, China M. Paw lowski International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-308 Gdańsk, Poland ?J. Lee (E-mail: hyoung@hanyang.ac.kr) Department of Physics, Hanyang University, Seoul 04763, Korea ?J. Kim (E-mail: jaewan@kias.re.kr) School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea ?J. Bang (E-mail: jbang@etri.re.kr) Electronics and Telecommunications Research Institute, Daejeon 34129, Korea ?Correspondence and requests for materials should be addressed to the last three authors. ar X iv :1 90 5. 05 75 1v 3 [ qu an tph ] 1 S ep 2 02 1 2 Wooyeong Song et al. quantum system. This hybrid architecture is used to implement a sampling oracle. It is shown that in the presence of noise in the hybrid oracle, the effects of internal noise can cancel each other out and thereby improve the query success rate. It is also shown that such an immunity of the hybrid oracle to noise directly and tangibly reduces the sample complexity in the framework of computational learning theory. This NISQ-compatible learning advantage is attributed to the oracle’s ability to handle large input features.

[1]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[2]  Maris Ozols,et al.  Easy and hard functions for the Boolean hidden shift problem , 2013, TQC.

[3]  Jeongho Bang,et al.  Quantum learning speedup in binary classification , 2013 .

[4]  Walter Vinci,et al.  Quantum variational autoencoder , 2018, Quantum Science and Technology.

[5]  Jeongho Bang,et al.  Optimal usage of quantum random access memory in quantum machine learning , 2018, Physical Review A.

[6]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[7]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[8]  S. Aaronson Read the fine print , 2015, Nature Physics.

[9]  Ronald de Wolf,et al.  Robust Polynomials and Quantum Algorithms , 2003, Theory of Computing Systems.

[10]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[11]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[12]  D. Angluin,et al.  Randomly fallible teachers: Learning monotone DNF with an incomplete membership oracle , 1991, Machine Learning.

[13]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[14]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[15]  Wim van Dam,et al.  Quantum Oracle Interrogation: Getting All Information for Almost Half the Price , 1999 .

[16]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[17]  Srinivasan Arunachalam,et al.  On the Robustness of Bucket Brigade Quantum RAM , 2015, TQC.

[18]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[19]  Niraj K. Jha,et al.  An Algorithm for Synthesis of Reversible Logic Circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  J. Ignacio Cirac,et al.  Computational speedups using small quantum devices , 2018, Physical review letters.

[21]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[22]  Nader H. Bshouty,et al.  Learning DNF over the uniform distribution using a quantum example oracle , 1995, COLT '95.

[23]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[24]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[25]  Andrew W. Cross,et al.  Quantum learning robust against noise , 2014, 1407.5088.

[26]  Jinhyoung Lee,et al.  A quantum speedup in machine learning: finding an N-bit Boolean function for a classification , 2013, 1303.6055.

[27]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[28]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[29]  Kang Hee Seol,et al.  Experimental demonstration of quantum learning speedup with classical input data , 2017, Physical Review A.

[30]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[31]  Julian F. Miller,et al.  Representation of Boolean quantum circuits as reed–Muller expansions , 2003, quant-ph/0305134.

[32]  Aram W. Harrow,et al.  Small quantum computers and large classical data sets , 2020, 2004.00026.

[33]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[34]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[35]  H. Eleuch,et al.  Probing Anderson localization using the dynamics of a qubit , 2016, 1612.03942.

[36]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[38]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[39]  Steve Hanneke,et al.  The Optimal Sample Complexity of PAC Learning , 2015, J. Mach. Learn. Res..

[40]  Nader H. Bshouty,et al.  Learning DNF over the Uniform Distribution Using a Quantum Example Oracle , 1999, SIAM J. Comput..

[41]  Andris Ambainis,et al.  Quantum Identification of Boolean Oracles , 2004, STACS.