On the extraction technique in boundary integral equations

In this paper we develop and analyze a bootstrapping algorithm for the extraction of potentials and arbitrary derivatives of the Cauchy data of regular three-dimensional second order elliptic boundary value problems in connection with corresponding boundary integral equations. The method rests on the derivatives of the generalized Green's representation formula, which are expressed in terms of singular boundary integrals as Hadamard's finite parts. Their regularization, together with asymptotic pseudohomogeneous kernel expansions, yields a constructive method for obtaining generalized jump relations. These expansions are obtained via composition of Taylor expansions of the local surface representation, the density functions, differential operators and the fundamental solution of the original problem, together with the use of local polar coordinates in the parameter domain. For boundary integral equations obtained by the direct method, this method allows the recursive numerical extraction of potentials and their derivatives near and up to the boundary surface.

[1]  G. Hsiao Variational Methods for Boundary Integral Equations: Theory and Applications , 1999 .

[2]  Martin Costabel,et al.  On Representation Formulas and Radiation Conditions , 1997 .

[3]  T. A. Cruse,et al.  On the non-singular traction-BIE in elasticity , 1994 .

[4]  J. H. Kane,et al.  Symmetric Galerkin boundary formulations employing curved elements , 1993 .

[5]  Masataka Tanaka,et al.  Boundary stress calculation using regularized boundary integral equation for displacement gradients , 1993 .

[6]  C. Schwab,et al.  On numerical cubatures of singular surface integrals in boundary element methods , 1992 .

[7]  F. Rizzo,et al.  A General Algorithm for the Numerical Solution of Hypersingular Boundary Integral Equations , 1992 .

[8]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[9]  F. John Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .

[10]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[11]  W. Wendland Die Behandlung von Randwertaufgaben imR3 mit Hilfe von Einfach- und Doppelschichtpotentialen , 1968 .

[12]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology : Volume 4 Integral Equations and Numerical Methods , 2000 .

[13]  I. Duff,et al.  The state of the art in numerical analysis , 1997 .

[14]  T. Cruse,et al.  Continuity of the Elastic BIE Formulation , 1995 .

[15]  O. Huber,et al.  Evaluation of the stress tensor in 3D elastostatics by direct solving of hypersingular integrals , 1993 .

[16]  Christoph Schwab,et al.  Kernel Properties and Representations of Boundary Integral Operators , 1992 .

[17]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[18]  B. Vainberg,et al.  Asymptotic methods in equations of mathematical physics , 1989 .

[19]  Wendland W.L. Costabel M.,et al.  Strong ellipticity of boundary integral operators. , 1986 .

[20]  F. Hartmann Elastic potentials on piecewise smooth surfaces , 1982 .

[21]  F. Hartmann The physical nature of elastic layers , 1982 .

[22]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[23]  J. Watson,et al.  Effective numerical treatment of boundary integral equations: A formulation for three‐dimensional elastostatics , 1976 .

[24]  J. Planchard,et al.  Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .

[25]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[26]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[27]  V. G. Mazʹi︠a︡,et al.  Potential theory and function theory for irregular regions , 1969 .

[28]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[29]  L. Schwartz Théorie des distributions , 1966 .

[30]  S. G. Mikhlin,et al.  Multidimensional Singular Integrals and Integral Equations , 1965 .