Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform

This paper is concerned with a heat diffusion problem in a half-space which is motivated by the detection of material defects using thermal measurements. This problem is solved by inverting the Laplace transform with respect to time on a contour in the complex plane using an exponentially convergent quadrature rule. This leads to a finite number of time-independent problems, which can be solved in parallel using boundary integral equation methods. We provide a full numerical analysis of this scheme on compact time intervals. Our results are formulated in a way that they can easily be used for other diffusion problems in exterior or interior domains.

[1]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[2]  Rainer Kress,et al.  Transmission problems for the Helmholtz equation , 1978 .

[3]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[4]  Francisco-Javier Sayas,et al.  Boundary integral approximation of a heat-diffusion problem in time-harmonic regime , 2006, Numerical Algorithms.

[5]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[6]  A. Salazar,et al.  Photothermal study of subsurface cylindrical structures. II. Experimental results , 1997 .

[7]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[8]  Thermal wave scattering by spheres , 2004 .

[9]  B. Silbermann,et al.  Numerical Analysis for Integral and Related Operator Equations , 1991 .

[10]  Rolf Schneider,et al.  Time discretization of parabolic boundary integral equations , 1992 .

[11]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide , 1986 .

[12]  General solution for the thermal wave scattering in fiber composites , 2002 .

[13]  Rainer Kress,et al.  Rothe's Method for the Heat Equation and Boundary Integral Equations , 1997 .

[14]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[15]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[16]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[17]  Dongwoo Sheen,et al.  A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..

[18]  George C. Hsiao,et al.  Boundary integral solution of the two-dimensional heat equation† , 1993 .

[19]  C. Palencia,et al.  On the numerical inversion of the Laplace transform of certain holomorphic mappings , 2004 .

[20]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[21]  R. Kress Linear Integral Equations , 1989 .

[22]  Siegfried M. Rump Optimal scaling for p‐norms and componentwise distance to singularity , 2003 .

[23]  Martin Costabel,et al.  Boundary integral operators for the heat equation , 1990 .

[24]  Birgit Faermann,et al.  Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.