Spread-Spectrum Techniques in Optical Communication Using Transform Domain Processing

A method of applying spread-spectrum techniques to optical communication is presented. The interference-suppression capability of spread-spectrum systems is shown to be enhanced by optical transform domain processing, and a design for spectral coding at optical frequencies is given. The encoding system is based on optical pulse compression and shaping. Several possible implementations of this system are suggested, and applications to fiber optics, laser radar, free-space optical communications, and other systems are discussed. >

[1]  Daniel R. Grischkowsky,et al.  Optical Pulse Compression , 1974, Topical Meeting on Ultrafast Phenomena.

[2]  Daniel R. Grischkowsky,et al.  Optical pulse compression based on enhanced frequency chirping , 1982 .

[3]  Anthony M. Johnson,et al.  80× single‐stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses , 1984 .

[4]  J P Heritage,et al.  Picosecond pulse shaping by spectral phase and amplitude manipulation. , 1985, Optics letters.

[5]  Casimer M. DeCusatis,et al.  Use of Spread Spectrum Techniques in Optical Transform Domain Processing , 1988 .

[6]  E. Treacy,et al.  Compression of picosecond light pulses , 1968 .

[7]  James P. Gordon,et al.  Negative group-velocity dispersion using refraction , 1984 .

[8]  Israel Bar-David,et al.  On dual optical detection: homodyne and transmitted-reference heterodyne reception , 1988, IEEE Trans. Commun..

[9]  Andrew M. Weiner,et al.  Spectral windowing of frequency‐modulated optical pulses in a grating compressor , 1985 .

[10]  Laurence B. Milstein,et al.  Processing Gain Advantage of Transform Domain Filtering DS - Spread Spectrum Systems , 1982, MILCOM 1982 - IEEE Military Communications Conference - Progress in Spread Spectrum Communications.

[11]  Laurence B. Milstein,et al.  Probability of Error Measurement for an Interference Resistant Transform Domain Processing Receiver , 1983, MILCOM 1983 - IEEE Military Communications Conference.

[12]  H. Haus Waves and fields in optoelectronics , 1983 .

[13]  C S Gardner,et al.  Satellite laser ranging using pseudonoise code modulated laser diodes. , 1988, Applied optics.

[14]  Gerard Mourou,et al.  Generation of ultrahigh peak power pulses by chirped pulse amplification , 1988 .

[15]  Daniel M. Litynski,et al.  Surface acoustic wave acousto‐electro‐optic effect , 1986 .

[16]  J. Kafka,et al.  Prism-pair dispersive delay lines in optical pulse compression. , 1987, Optics letters.

[17]  M. Haner,et al.  Generation of programmable, picosecond-resolution shaped laser pulses by fiber-grating pulse compression. , 1987, Optics Letters.

[18]  N. Okamoto,et al.  Nonlinear TE waves in an optically nonlinear curved waveguide and pulse compression , 1988 .

[19]  P.M. Grant,et al.  A review of current and future components for electronic warfare receivers , 1981, IEEE Transactions on Sonics and Ultrasonics.

[20]  K. Billman Laser Assisted Propulsion Research , 1978 .

[21]  Oscar E. Martínez,et al.  3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region , 1987 .

[22]  L. B. Milstein,et al.  Implementation of a DS-Spread Spectrum Intercept Receiver with an Adaptive Narrow-Band Interference Exciser using Transform Domain Processing and Time Weighting , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.

[23]  Laurence B. Milstein,et al.  A Comparison of Weighted and Non-Weighted Transform Domain Processing Systems for Narrowband Interference Excision , 1984, MILCOM 1984 - IEEE Military Communications Conference.