The Coin Problem for Product Tests

Let Xm,ϵ be the distribution over m bits X1,…,Xm where the Xi are independent and each Xi equals 1 with probability (1−ϵ)/2 and 0 with probability (1 − ϵ)/2. We consider the smallest value ϵ* of ϵ such that the distributions Xm, ϵ and Xm, 0 can be distinguished with constant advantage by a function f : {0,1}m → S, which is the product of k functions f1,f2,…, fk on disjoint inputs of n bits, where each fi : {0,1}n → S and m = nk. We prove that ϵ* = Θ(1/√n log k) if S = [−1,1], while ϵ* = Θ(1/√nk) if S is the set of unit-norm complex numbers.

[1]  Parikshit Gopalan,et al.  Inequalities and tail bounds for elementary symmetric polynomial , 2014, Electron. Colloquium Comput. Complex..

[2]  John N. Tsitsiklis,et al.  On Learning With Finite Memory , 2012, IEEE Transactions on Information Theory.

[3]  Emanuele Viola,et al.  Hardness amplification proofs require majority , 2008, SIAM J. Comput..

[4]  Noam Nisan,et al.  Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..

[5]  John P. Steinberger The Distinguishability of Product Distributions by Read-Once Branching Programs , 2013, 2013 IEEE Conference on Computational Complexity.

[6]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[7]  Emanuele Viola,et al.  Randomness Buys Depth for Approximate Counting , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[8]  J. Steele The Cauchy–Schwarz Master Class: References , 2004 .

[9]  Michael E. Saks,et al.  Discrepancy sets and pseudorandom generators for combinatorial rectangles , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[10]  Chi-Jen Lu,et al.  Improved Pseudorandom Generators for Combinatorial Rectangles , 1998, Comb..

[11]  Emanuele Viola,et al.  Bounded independence plus noise fools products , 2016, Electron. Colloquium Comput. Complex..

[12]  Peter Bro Miltersen,et al.  Efficient Multiparty Protocols via Log-Depth Threshold Formulae , 2013, Electron. Colloquium Comput. Complex..

[13]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[14]  Joshua Brody,et al.  The Coin Problem and Pseudorandomness for Branching Programs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[15]  Daniel M. Kane,et al.  Pseudorandomness via the Discrete Fourier Transform , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[16]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[17]  Luca Trevisan,et al.  Better Pseudorandom Generators from Milder Pseudorandom Restrictions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[18]  János Komlós,et al.  Deterministic simulation in LOGSPACE , 1987, STOC.

[19]  Noam Nisan,et al.  Efficient approximation of product distributions , 1998, Random Struct. Algorithms.

[20]  Ran Raz,et al.  Two Sides of the Coin Problem , 2014, APPROX-RANDOM.

[21]  Scott Aaronson,et al.  Advice Coins for Classical and Quantum Computation , 2011, ICALP.

[22]  Thomas Watson,et al.  Pseudorandom generators for combinatorial checkerboards , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[23]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[24]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..