Aircraft Aluminum Alloys: Applications and Future Trends

Within the last century aluminum alloys have played a strategic role in the manufacturing and development of lightweight aircraft structures. Years of continuous research has led to significant improvement in mechanical properties in the form of advanced 2xxx and 7xxx series alloys and the opportunity to produce more lightweight materials with advanced properties such as the last-generation Al–Li alloys. An overview of the evolution of aircraft aluminum alloys from the original Al–Cu alloys to modern nanocrystalline and hybrid aluminum alloys is presented. Basic properties and processes are featured, that define the material performance and determine their main applications in aircraft industry. Finally, novel trends in the design of aluminum alloys are considered in order to meet the future challenges of modern aircraft applications.

[1]  Joseph R. Davis Properties and selection : nonferrous alloys and special-purpose materials , 1990 .

[2]  S. Pantelakis,et al.  Effects of temper condition and corrosion on the fatigue performance of a laser-welded Al–Cu–Mg–Ag (2139) alloy , 2010 .

[3]  L. Fratini,et al.  An Innovative Friction Stir Welding Based Technique to Produce Dissimilar Light Alloys to Thermoplastic Matrix Composite Joints , 2016 .

[4]  Jong Jin Park,et al.  Formability of magnesium AZ31 sheet in the incremental forming at warm temperature , 2008 .

[5]  Hongyun Luo,et al.  Improving the ductility of nanostructured Al alloy using strongly textured nano-laminated structure combined with nano-precipitates , 2016 .

[6]  Janet M. Twomey,et al.  Recycling of Aircraft: State of the Art in 2011 , 2013 .

[7]  Roberto Guglielmo Citarella,et al.  FML full scale aeronautic panel under multiaxial fatigue: Experimental test and DBEM Simulation , 2011 .

[8]  S. T. Amancio-Filho,et al.  Joining of Polymers and Polymer-Metal Hybrid Structures: Recent Developments and Trends , 2009 .

[9]  Jaap Schijve,et al.  Fatigue of structures and materials , 2001 .

[10]  S. T. D. Freitas,et al.  Failure analysis of adhesively-bonded metal-skin-to-composite-stiffener: Effect of temperature and cyclic loading , 2017 .

[11]  Mica Grujicic,et al.  Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding , 2010 .

[12]  Yonghao Zhao,et al.  Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys , 2006 .

[13]  J. Kaufman Introduction to Aluminum Alloys and Tempers , 2000 .

[14]  René Alderliesten,et al.  Fatigue and damage tolerance issues of GLARE in aircraft structures , 2006 .

[15]  E. Starke,et al.  The influence of grain structure on the ductility of the al- cu- li- mn- cd alloy 2020 , 1982 .

[16]  C Soutis,et al.  Materials for airframes , 2003, The Aeronautical Journal (1968).

[17]  Jan Willem Gunnink,et al.  Fibre Metal Laminates , 2001 .

[18]  Lihui Lang,et al.  Analysis of key parameters in sheet hydroforming combined with stretching forming and deep drawing , 2004 .

[19]  P. Gregson,et al.  Microstructural control of toughness in aluminium-lithium alloys , 1985 .

[20]  Paul E. Krajewski,et al.  Overview of Quick Plastic Forming Technology , 2007 .

[21]  J. Schoenung,et al.  Investigation of aluminum-based nanocomposites with ultra-high strength , 2009 .

[22]  R. Wanhill Status and prospects for aluminium-lithium alloys in aircraft structures , 1992 .

[23]  S. T. Amancio-Filho,et al.  On the feasibility of a friction-based staking joining method for polymer-metal hybrid structures , 2016 .

[24]  Zhiheng Hu,et al.  Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties , 2016 .

[25]  I. Richardson,et al.  Autogenous laser keyhole welding of aluminum alloy 2024 , 2005 .

[26]  Christopher D. Haines,et al.  Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles , 2011 .

[27]  L. Pasquini,et al.  The influence of grain size on the mechanical properties of nanocrystalline aluminium , 1997 .

[28]  F. Walther,et al.  Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM) , 2016 .

[29]  Farhang Pourboghrat,et al.  Experimental and numerical study of stamp hydroforming of sheet metals , 2003 .

[30]  K. Jata,et al.  Evolution of texture, micro structure and mechanical property anisotropy in an Al-Li-Cu alloy , 1998 .

[31]  F. Caiazzo,et al.  Porosity evolution in aluminum alloy 2024 bop and butt defocused welding by Yb-YAG disk laser , 2011 .

[32]  Stefania Bruschi,et al.  Hot stamping of AA5083 aluminium alloy sheets , 2013 .

[33]  Farghalli A. Mohamed,et al.  Particulate reinforced metal matrix composites — a review , 1991, Journal of Materials Science.

[34]  T. Sercombe,et al.  Selective laser melting of aluminium and aluminium metal matrix composites: review , 2016 .

[35]  Jan Willem Gunnink,et al.  Fibre metal laminates : an introduction , 2001 .

[36]  K. Mori,et al.  Hot stamping of high-strength aluminium alloy aircraft parts using quick heating , 2017 .

[37]  Dean Deng,et al.  A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding , 2014 .

[38]  S. T. Amancio-Filho,et al.  Mechanical and failure behaviour of hybrid polymer–metal staked joints , 2013 .

[39]  G. Newaz,et al.  Compression after impact characteristics of carbon fiber reinforced aluminum laminates , 2017 .

[40]  S. T. Amancio-Filho,et al.  Friction Spot Joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechanical performance , 2014 .

[41]  E. Lavernia,et al.  Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys , 1990 .

[42]  R. Ritchie,et al.  Mechanical properties of Al–Li alloys Part 1 Fracture toughness and microstructure , 1989 .

[43]  Farhang Pourboghrat,et al.  Springback calculation for plane strain sheet forming using finite element membrane solution , 1992 .

[44]  Chun-Gon Kim,et al.  Evaluation of cryogenic performance of adhesives using composite–aluminum double-lap joints , 2005 .

[45]  T. Pollock,et al.  3D printing of high-strength aluminium alloys , 2017, Nature.

[46]  L. B. Vogelesang,et al.  Towards application of fibre metal laminates in large aircraft , 1999 .

[47]  K. S. Prasad,et al.  In-plane anisotropy in the fracture toughness of an Al-Li 8090 alloy plate , 1993 .

[48]  R. Valiev,et al.  Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development , 2013 .

[49]  Evan Ma,et al.  Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation , 2007 .

[50]  Sp.G. Pantelakis,et al.  Prediction of crack growth following a single overload in aluminum alloy with sheet and plate microstructure , 2011 .

[51]  N. Prasad,et al.  On the micromechanisms responsible for bilinearity in fatigue power-law relationships in aluminium-lithium alloys , 1997 .

[52]  M. Heinimann,et al.  Advanced Aluminum and Aluminum-Lithium Solutions for Derivative and Next Generation Aerospace Structures , 2012 .

[53]  Jamshid Sabbaghzadeh,et al.  The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy , 2009 .

[54]  J. T. Staley,et al.  Application of modern aluminum alloys to aircraft , 1996 .

[55]  P. Arrazola,et al.  Effect of cutting speed on the surface integrity of face milled 7050-T7451 aluminium workpieces , 2018 .

[56]  Lin-zhi Wu,et al.  Low velocity impact of carbon fiber aluminum laminates , 2015 .

[57]  Di Zhang,et al.  In situ synthesis of nanostructured carbon reinforcement in aluminum powders , 2010 .

[58]  Matthew J. Eckelman,et al.  Life cycle carbon benefits of aerospace alloy recycling , 2014 .

[59]  Alfonso Maffezzoli,et al.  Hybrid ultrasonic spot welding of aluminum to carbon fiber reinforced epoxy composites , 2017 .

[60]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[61]  Huijie Zhang,et al.  Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy , 2011 .

[62]  M. Liewald,et al.  Evaluation of Pneumatic Bulge Test Experiments and Corresponding Numerical Forming Simulations , 2011 .

[63]  B. Lenczowski,et al.  NEW LIGHTWEIGHT ALLOYS FOR WELDED AIRCRAFT STRUCTURE , 2002 .

[64]  Julie M. Schoenung,et al.  A tri-modal aluminum based composite with super-high strength , 2005 .

[65]  E. Starke,et al.  Microstructure-property relationships of two AI-3Li-2Cu-0.2Zr-XCd alloys , 1982 .

[66]  J. Kweon,et al.  A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum , 2008 .

[67]  R. Ritchie,et al.  Fatigue of aluminium—lithium alloys , 1992 .

[68]  E. Starke,et al.  The effect of slip distribution on the monotonic and cyclic ductility of AlLi binary alloys , 1982 .

[69]  Z. Ma,et al.  Influence of Tool Dimension and Welding Parameters on Microstructure and Mechanical Properties of Friction-Stir-Welded 6061-T651 Aluminum Alloy , 2008 .

[70]  Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion , 2012 .

[71]  D. Bourell,et al.  A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys , 2016 .

[72]  S. Suresh,et al.  Microscopic and macroscopic aspects of fracture in lithium-containing aluminum alloys , 1987 .

[73]  N. Prasad,et al.  Effect of crack deflection and branching on the R-curve behaviour of an Al-Li alloy 2090 sheet , 1993 .

[74]  C. Emmelmann,et al.  Additive Manufacturing of Metals , 2016 .

[75]  D. Ko,et al.  Two-steps clinching of aluminum and Carbon Fiber Reinforced Polymer sheets , 2017 .

[76]  P. Lequeu,et al.  Aluminum-Copper-Lithium Alloy 2050 Developed for Medium to Thick Plate , 2010 .

[77]  S. Lynch Fracture of 8090 AlLi plate I. Short transverse fracture toughness , 1991 .

[78]  A. Tzamtzis,et al.  An experimental approach for estimating the effect of heat affected zone (HAZ) microstructural gradient on fatigue crack growth rate in aluminum alloy FSW , 2017 .

[79]  J. Yang,et al.  The mechanical behavior of GLARE laminates for aircraft structures , 2005 .

[80]  Tracie Prater,et al.  Friction Stir Welding of Metal Matrix Composites for use in aerospace structures , 2014 .

[81]  Ghulam Hussain,et al.  Electric hot incremental forming: A novel technique , 2008 .

[82]  Hong Hocheng,et al.  Machining technology for composite materials , 2012 .

[83]  H. Bhadeshia,et al.  Recent advances in friction-stir welding : Process, weldment structure and properties , 2008 .

[84]  Joseph R. Davis Corrosion of Aluminum and Aluminum Alloys , 1999 .

[85]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[86]  M. Moreira,et al.  Corrosion and fatigue behavior of new Al alloys , 2011 .

[87]  N. Prasad,et al.  In-plane anisotropy in low cycle fatigue properties of and bilinearity in Coffin-Manson plots for quaternary AI-Li-Cu-Mg 8090 alloy plate , 1996 .

[88]  D. Webster The effect of low melting point impurities on the properties of aluminum-lithium alloys , 1987 .

[89]  I. Palmer,et al.  New Approaches to Alloy Development in the Al-Li System , 1981 .

[90]  Lihui Lang,et al.  Investigation into the effect of pre-bulging during hydromechanical deep drawing with uniform pressure onto the blank , 2004 .

[91]  Mohsen Seifi,et al.  Metal Additive Manufacturing: A Review of Mechanical Properties , 2016 .

[92]  Paul Mativenga,et al.  An experimental study of cutting forces in high-speed end milling and implications for dynamic force modeling , 2005 .

[93]  L. Tricarico,et al.  Evaluation of the optimal working conditions for the warm sheet HydroForming taking into account the yielding condition , 2016 .

[94]  S. Goushegir Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures , 2016, Welding in the World.

[95]  J. Hatch,et al.  Aluminum: Properties and Physical Metallurgy , 1984 .

[96]  P. Čížek,et al.  Cyclic deformation response of UFG 2024 Al alloy , 2011 .

[97]  P. Withers,et al.  Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024 , 2004 .

[98]  N. Prasad,et al.  Low cycle fatigue resistance of Al–Li alloys , 2000 .

[99]  A. Tzamtzis,et al.  Improvement of fatigue crack growth resistance by controlled overaging in 2024-T3 aluminium alloy , 2014 .

[100]  Kumar V. Jata,et al.  Fatigue crack growth and fracture toughness behavior of an Al-Li-Cu alloy , 1986 .

[101]  D. Bae,et al.  Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders , 2008 .

[102]  H. Fujii,et al.  Enhanced mechanical properties of 70/30 brass joint by multi-pass friction stir welding with rapid cooling , 2015 .

[103]  Jianguo Lin,et al.  A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components , 2018, International Journal of Lightweight Materials and Manufacture.