Optical advantages and function of multifocal spherical fish lenses.

The spherical crystalline lenses in the eyes of many fish species are well-suited models for studies on how natural selection has influenced the evolution of the optical system. Many of these lenses exhibit multiple focal lengths when illuminated with monochromatic light. Similar multifocality is present in a majority of vertebrate eyes, and it is assumed to compensate for the defocusing effect of longitudinal chromatic aberration. In order to identify potential optical advantages of multifocal lenses, we studied their information transfer capacity by computer modeling. We investigated four lens types: the lens of Astatotilapia burtoni, an African cichlid fish species, an equivalent monofocal lens, and two artificial multifocal lenses. These lenses were combined with three detector arrays of different spectral properties: the cone photoreceptor system of A. burtoni and two artificial arrays. The optical properties compared between the lenses were longitudinal spherical aberration curves, point spread functions, modulation transfer functions, and imaging characteristics. The multifocal lenses had a better balance between spatial and spectral information than the monofocal lenses. Additionally, the lens and detector array had to be matched to each other for optimal function.

[1]  Yoshinori Shichida,et al.  Evolution of opsins and phototransduction , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[3]  B K Pierscionek,et al.  The refractive index along the optic axis of the bovine lens , 1995, Eye.

[4]  J. Bowmaker,et al.  Visual pigments and the photic environment: The cottoid fish of Lake Baikal , 1994, Vision Research.

[5]  Tim Malmström,et al.  Pupil shapes and lens optics in the eyes of terrestrial vertebrates , 2006, Journal of Experimental Biology.

[6]  Melanie C. W. Campbell,et al.  Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni , 1996 .

[7]  Pak Lim Chu,et al.  Nondestructive measurement of index profile of an optical-fibre preform , 1977 .

[8]  R. Kröger,et al.  Visualization of chromatic correction of fish lenses by multiple focal lengths , 2005 .

[9]  R. Wehner ‘Matched filters’ — neural models of the external world , 1987, Journal of Comparative Physiology A.

[10]  Rejean Munger,et al.  Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish haplochromis burtoni , 1994, Vision Research.

[11]  Y. Gagnon,et al.  Optical Plasticity in the Crystalline Lenses of the Cichlid Fish Aequidens pulcher , 2009, Current Biology.

[12]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation. , 2013 .

[13]  Melanie C. W. Campbell,et al.  Measurement of refractive index in an intact crystalline lens , 1984, Vision Research.

[14]  William J. Fitzgerald,et al.  An Alternative Algorithm for Adaptive Histogram Equalization , 1996, CVGIP Graph. Model. Image Process..

[15]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[16]  S. Collin,et al.  Opsins: Evolution in Waiting , 2005, Current Biology.

[17]  Ludwig Matthiessen Ueber die Beziehungen, welche zwischen dem Brechungsindex des Kerncentrums der Krystalllinse und den Dimensionen des Auges bestehen , 1882, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[18]  S. Collin,et al.  Early evolution of multifocal optics for well-focused colour vision in vertebrates , 2008, Journal of Experimental Biology.

[19]  David M. Hunt,et al.  Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids , 2005, Current Biology.

[20]  Linda Lundström,et al.  The pupils and optical systems of gecko eyes. , 2009, Journal of vision.

[21]  R. Kröger,et al.  Dopamine Induces Optical Changes in the Cichlid Fish Lens , 2009, PloS one.

[22]  B. Söderberg,et al.  Effects of the peripheral layers on the optical properties of spherical fish lenses. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  James K. Lein,et al.  Environmental Sensing: Analytical Techniques for Earth Observation , 2011 .

[24]  A. Fletcher,et al.  Solutions of two optical problems , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  E. Warrant,et al.  Lens optical properties in the eyes of large marine predatory teleosts , 2009, Journal of Comparative Physiology A.

[26]  B. Söderberg,et al.  Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses , 2010, Vision Research.

[27]  O. Gustafsson,et al.  A fibrous membrane suspends the multifocal lens in the eyes of lampreys and African lungfishes , 2010, Journal of morphology.

[28]  R. Kröger,et al.  Short-term culturing of teleost crystalline lenses combined with high-resolution optical measurements , 2010, Cytotechnology.

[29]  C. Pask,et al.  Nondestructive index profile measurement of noncircular optical fibre preforms , 1978 .

[30]  G. Katzir,et al.  Multifocal lenses in coral reef fishes , 2007, Journal of Experimental Biology.

[31]  D. Batens,et al.  Theory and Experiment , 1988 .

[32]  B K Pierscionek,et al.  Refractive index of the human lens surface measured with an optic fibre sensor. , 1994, Ophthalmic research.

[33]  A. Kelber,et al.  Multifocal optical systems and pupil dynamics in birds , 2008, Journal of Experimental Biology.

[34]  U. Siebert,et al.  Multifocal lenses in a monochromat: the harbour seal , 2008, Journal of Experimental Biology.

[35]  R. Fernald,et al.  Multifocal lenses compensate for chromatic defocus in vertebrate eyes , 1999, Journal of Comparative Physiology A.

[36]  Russell D. Fernald,et al.  Visual receptor pigments in the african cichlid fish,Haplochromis burtoni , 1980, Vision Research.

[37]  Collectif Encyclopedia of Fish Physiology : From Genome to Environment , 2011 .

[38]  Optical quality during crystalline lens growth , 1984, Nature.

[39]  R. Fernald,et al.  The development of the crystalline lens is sensitive to visual input in the African cichlid fish, Haplochromis burtoni , 2001, Vision Research.

[40]  Eric J. Warrant,et al.  Absorption of white light in photoreceptors , 1998, Vision Research.

[41]  B K Pierscionek,et al.  The refractive index and protein distribution in the blue eye trevally lens. , 1995, Journal of the American Optometric Association.

[42]  J. Lythgoe,et al.  The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef , 1994, Journal of Comparative Physiology A.

[43]  R. Kröger VISION | Physiological Optics in Fishes , 2011 .

[44]  Optical development of the ocular lens of an elasmobranch, Raja elanteria , 1991, Vision Research.

[45]  J. Sivak,et al.  Longitudinal chromatic aberration of the vertebrate eye , 1983, Vision Research.

[46]  H. Hofmann,et al.  Parallel evolution of opsin gene expression in African cichlid fishes. , 2010, Molecular biology and evolution.

[47]  L. Post The Vertebrate Eye and Its Adaptive Radiation , 1943 .

[48]  N. Marshall,et al.  Visual Biology of Hawaiian Coral Reef Fishes. II. Colors of Hawaiian Coral Reef Fish , 2003, Copeia.

[49]  G Smith,et al.  Nondestructive Method of Constructing Three‐Dimensional Gradient Index Models for Crystalline Lenses: I. Theory and Experiment , 1988, American journal of optometry and physiological optics.