A two-step synthesis of nanosheet-covered fibers based on α-Fe2O3/NiO composites towards enhanced acetone sensing

[1]  Peng Sun,et al.  Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets , 2017 .

[2]  Peng Sun,et al.  Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures , 2016 .

[3]  Ning Han,et al.  MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance , 2016 .

[4]  Peng Sun,et al.  Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure , 2015 .

[5]  Jun Zhang,et al.  Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO₂ Core-Shell Nanorods on Flat Alumina Substrates. , 2015, ACS applied materials & interfaces.

[6]  Chunmei Zhang,et al.  Fabrication of SnO2-SnO nanocomposites with p-n heterojunctions for the low-temperature sensing of NO2 gas. , 2015, Nanoscale.

[7]  Li-ping Zhu,et al.  Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays , 2015 .

[8]  Xiaolei Li,et al.  Enhanced Gas-Sensing Performance of Fe-Doped Ordered Mesoporous NiO with Long-Range Periodicity , 2015 .

[9]  Wei Chen,et al.  Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. , 2015, Analytical chemistry.

[10]  S. Chichibu,et al.  Experimental determination of band offsets of NiO-based thin film heterojunctions , 2014 .

[11]  Soumen Das,et al.  SnO2: A comprehensive review on structures and gas sensors , 2014 .

[12]  Wei Chen,et al.  Freestanding 3D mesoporous Co₃O₄@carbon foam nanostructures for ethanol gas sensing. , 2014, Analytical chemistry.

[13]  J. Ouyang,et al.  Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. , 2014, ACS applied materials & interfaces.

[14]  R. Lopez,et al.  Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized Solar Cells , 2014 .

[15]  Yanshuang Wang,et al.  Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application , 2014 .

[16]  Youjun Yang,et al.  A concise colorimetric and fluorimetric probe for sarin related threats designed via the "covalent-assembly" approach. , 2014, Journal of the American Chemical Society.

[17]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[18]  N. Xu,et al.  Field emission from α-Fe2O3 nanoflakes: Effect of vacuum pressure, gas adsorption and in-situ thermal treatment , 2014 .

[19]  Guizhi Li,et al.  An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis , 2014 .

[20]  Juyoung Yoon,et al.  Polydiacetylene-based colorimetric and fluorescent chemosensor for the detection of carbon dioxide. , 2013, Journal of the American Chemical Society.

[21]  D. Bhattacharjya,et al.  1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors , 2013 .

[22]  Q. Ma,et al.  Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide–polyaniline composite as a counter electrode , 2013 .

[23]  Li-ping Zhu,et al.  Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor , 2013 .

[24]  Simon J. Henley,et al.  Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[25]  Ho Won Jang,et al.  Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. , 2013, Nanoscale.

[26]  Zhen Yu Koh,et al.  Scalable synthesis of urchin- and flowerlike hierarchical NiO microspheres and their electrochemical property for lithium storage. , 2013, ACS applied materials & interfaces.

[27]  Y. Ikuhara,et al.  Ferromagnetic dislocations in antiferromagnetic NiO. , 2013, Nature nanotechnology.

[28]  H. Dai,et al.  The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion , 2013 .

[29]  Hyun‐Kon Song,et al.  Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. , 2013, ACS applied materials & interfaces.

[30]  G. Lu,et al.  Gas sensing with hollow α-Fe2O3 urchin-like spheres prepared via template-free hydrothermal synthesis , 2012 .

[31]  H. Dai,et al.  Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion , 2012 .

[32]  P. Wu,et al.  Solution plasma synthesized nickel oxide nanoflowers: An effective NO2 sensor , 2012 .

[33]  K. Kim,et al.  Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres , 2012 .

[34]  Xing Hu,et al.  Synthesis of Fe-doped NiO nanofibers using electrospinning method and their ferromagnetic properties , 2012 .

[35]  Yulin Min,et al.  Facile procedure to synthesize highly crystalline Ag/NiO nanocomposite microspheres and their photocatalytic activity , 2012, Journal of Materials Science: Materials in Electronics.

[36]  E. Itoh,et al.  Relationship between Work Function of Hole Collection Electrode and Temperature Dependence of Open-Circuit Voltage in Multilayered Organic Solar Cells , 2012 .

[37]  Taihong Wang,et al.  NiO nanomaterials: controlled fabrication, formation mechanism and the application in lithium-ion battery , 2012 .

[38]  Nicolae Barsan,et al.  The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2‐Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies , 2011 .

[39]  T. Kavitha,et al.  A facile approach to the synthesis of high-quality NiO nanorods: electrochemical and antibacterial properties , 2011 .

[40]  Haixia Wu,et al.  Synthesis of single-crystalline α-Fe2O3 nanobelts via a facile PEG-200 assisted solution route , 2011 .

[41]  G. Lu,et al.  Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods , 2011 .

[42]  B. Liu,et al.  Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals , 2011 .

[43]  Cong Wang,et al.  Lotus-root-like NiO nanosheets and flower-like NiO microspheres: synthesis and magnetic properties , 2011 .

[44]  Giorgio Sberveglieri,et al.  Novel Synthesis and Gas Sensing Performances of CuO–TiO2 Nanocomposites Functionalized with Au Nanoparticles , 2011 .

[45]  Murthy Chavali,et al.  Effect of ‘Pt’ loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature , 2011 .

[46]  Zaiping Guo,et al.  Submicron-sized cube-like α-Fe2O3 agglomerates as an anode material for Li-ion batteries , 2010 .

[47]  Malina K. Storer,et al.  Accurate, reproducible measurement of acetone concentration in breath using selected ion flow tube-mass spectrometry , 2010, Journal of breath research.

[48]  Yun Chan Kang,et al.  Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers , 2010 .

[49]  Jun Song Chen,et al.  Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. , 2010, Journal of the American Chemical Society.

[50]  David Zhang,et al.  A Novel Breath Analysis System Based on Electronic Olfaction , 2010, IEEE Transactions on Biomedical Engineering.

[51]  E. Ibáñez,et al.  Screening for bioactive compounds from algae. , 2010, Journal of pharmaceutical and biomedical analysis.

[52]  Bin Zhao,et al.  Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties , 2009 .

[53]  Y. M. Zhao,et al.  X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset , 2009 .

[54]  A. Tang,et al.  Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials , 2008 .

[55]  C. Xie,et al.  Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor , 2008 .

[56]  Xi‐Wen Du,et al.  NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties , 2008 .

[57]  Pedagógia,et al.  Cross Sectional Study , 2019 .

[58]  Huakun Liu,et al.  Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries , 2006 .

[59]  S. Fu,et al.  Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures , 2006 .

[60]  H. Kim,et al.  Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor , 2006 .

[61]  R. P. Pant,et al.  Effect of Ni doping on thick film SnO2 gas sensor , 2006 .

[62]  R. Castro,et al.  Surface segregation and consequent SO2 sensor response in SnO2-NiO , 2005 .

[63]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[64]  W. Miekisch,et al.  Diagnostic potential of breath analysis--focus on volatile organic compounds. , 2004, Clinica chimica acta; international journal of clinical chemistry.

[65]  서정헌,et al.  반도체 공정 overview , 2001 .

[66]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[67]  R. Cataneo,et al.  Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study , 1999, The Lancet.

[68]  D. Kohl,et al.  Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors , 1988 .

[69]  John H. Kennedy,et al.  Flatband Potentials and Donor Densities of Polycrystalline α ‐ Fe2 O 3 Determined from Mott‐Schottky Plots , 1978 .

[70]  A. B. Robinson,et al.  Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. , 1971, Proceedings of the National Academy of Sciences of the United States of America.