Conformal Transformations and the SLE Partition Function Martingale

Abstract. We present an implementation in conformal field theory (CFT) of local finite conformal transformations fixing a point. We give explicit constructions when the fixed point is either the origin or the point at infinity. Both cases involve the exponentiation of a Borel subalgebra of the Virasoro algebra. We use this to build coherent state representations and to derive a close analog of Wick’s theorem for the Virasoro algebra. This allows to compute the conformal partition function in non trivial geometries obtained by removal of hulls from the upper half-plane. This is then applied to stochastic Loewner evolutions (SLE). We give a rigorous derivation of the equations, obtained previously by the authors, that connect the stochastic Loewner equation to the representation theory of the Virasoro algebra. We give a new proof that this construction enumerates all polynomial SLE martingales. When one of the hulls removed from the upper half-plane is the SLE hull, we show that the partition function reduces to a useful local martingale known to probabilists, thereby unraveling its CFT origin.

[1]  H. Verlinde,et al.  Loop equations and Virasoro con - straints in nonperturbative two - dimensional quantum gravity , 1991 .

[2]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[3]  Duplantier Conformally invariant fractals and potential theory , 2000, Physical review letters.

[4]  H. Verlinde,et al.  Loop Equations and Virasoro Constraints in Non-perturbative 2-D Quantum Gravity , 1990 .

[5]  塚田 弘志,et al.  書評 Ioannis Karatzas & Steven E. Shreve Brownian Motion and Stochastic Calculus , 1998 .

[6]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[7]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[8]  Conformal Invariance in Percolation, Self-Avoiding Walks, and Related Problems , 2002, cond-mat/0209638.

[9]  M. Bauer,et al.  Conformal Field Theories of Stochastic Loewner Evolutions , 2002, hep-th/0210015.

[10]  John Cardy Critical percolation in finite geometries , 1992 .

[11]  John Cardy Conformal Invariance and Percolation , 2001 .

[12]  Denis Bernard,et al.  SLE martingales and the Virasoro algebra , 2003 .

[13]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[14]  Higher Conformal Multifractality , 2002, cond-mat/0207743.

[15]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[16]  V. Kaimanovich An introduction to the Stochastic Loewner Evolution , 2004 .

[17]  D. Bernard,et al.  SLEκ growth processes and conformal field theories , 2002 .