Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids

Deriving high precision schemes to compute turbulent flows on fixed or moving complex grids is becoming a central issue in the direct numerical simulation (DNS) and large eddy simulation (LES) community. The step between classical DNS/LES codes on fixed structured grids and future methods on moving unstructured grids is a significant evolution in terms of numerical methods. For reacting flows, this evolution must also include more precise descriptions of multispecies flows and boundary conditions. This paper describes the development of a method for unsteady multispecies reacting flows on moving grids. The target field of application of this method is DNS and LES but this paper focuses on the method development and elementary test cases. The theoretical basis for the numerical method, the boundary conditions and the moving grid extension are first discussed. Various tests of the method are then provided on fixed and moving grids for simple reacting and non-reacting flows to demonstrate the precision and power of the method in simple reference laminar cases.

[1]  W. P. Jones,et al.  Large Eddy simulation of a turbulent non-premixed flame , 2001 .

[2]  V. Giovangigli Multicomponent flow modeling , 1999 .

[3]  Christopher J. Rutland,et al.  Direct simulations of premixed turbulent flames with nonunity Lewis numbers , 1993 .

[4]  P. Moin,et al.  Boundary conditions for direct computation of aerodynamic sound generation , 1993 .

[5]  G. Patnaik,et al.  A computational study of local quenching in flame-vortex interactions with radiative losses , 1998 .

[6]  Thierry Poinsot,et al.  Large eddy simulation predictions of mixing enhancement for jets in cross-flows , 2004 .

[7]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[8]  S. Pope,et al.  Straining and scalar dissipation on material surfaces in turbulence: Implications for flamelets , 1990 .

[9]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[10]  N. Peters,et al.  Numerical Simulation of Turbulent Flame Structure with Non-unity Lewis Number , 1987 .

[11]  H. Pitsch,et al.  Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D) , 2000 .

[12]  S. Menon,et al.  AN UNSTEADY INCOMPRESSIBLE NAVIER-STOKES SOLVER FOR LARGE EDDY SIMULATION OF TURBULENT FLOWS , 1999 .

[13]  F. Nicoud,et al.  Flow forcing techniques for numerical simulation of combustion instabilities , 2002 .

[14]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[15]  Christopher J. Rutland,et al.  Premixed flame effects on turbulence and pressure-related terms , 1995 .

[16]  W. P. Jones,et al.  Global reaction schemes for hydrocarbon combustion , 1988 .

[17]  Thierry Poinsot,et al.  Effects of pressure gradients on turbulent premixed flames , 1997, Journal of Fluid Mechanics.

[18]  S. Frankel,et al.  Large eddy simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models , 1998 .

[19]  Krishnan Mahesh,et al.  A numerical method for large-eddy simulation in complex geometries , 2004 .

[20]  H. Pitsch,et al.  Large-eddy simulation of premixed turbulent combustion using a level-set approach , 2002 .

[21]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[22]  D. Veynante,et al.  Gradient and counter-gradient scalar transport in turbulent premixed flames , 1997, Journal of Fluid Mechanics.

[23]  Josette Bellan,et al.  Consistent Boundary Conditions for Multicomponent Real Gas Mixtures Based on Characteristic Waves , 2002 .

[24]  Alexandre Ern,et al.  Multicomponent transport algorithms , 1994 .

[25]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[26]  Thierry Poinsot,et al.  Numerical simulations of Lewis number effects in turbulent premixed flames , 1992, Journal of Fluid Mechanics.

[27]  C. Rowley,et al.  Discretely Nonreflecting Boundary Conditions for Linear Hyperbolic Systems , 2000 .

[28]  P. Moin,et al.  Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion , 2004, Journal of Fluid Mechanics.

[29]  Propagation of a premixed flame in a divided-chamber combustor , 1989 .

[30]  C. Westbrook,et al.  Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , 1981 .

[31]  D. Thévenin,et al.  Accurate Boundary Conditions for Multicomponent Reactive Flows , 1995 .

[32]  Michael B. Giles,et al.  Nonreflecting boundary conditions for Euler equation calculations , 1990 .

[33]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[34]  L. Fuchs,et al.  Modeling of Liquid Fuel Injection, Evaporation and Mixing in a Gas Turbine Burner Using Large Eddy Simulations , 2000 .

[35]  Denis Veynante,et al.  LES of Chemical and Acoustic Forcing of a Premixed Dump Combustor , 2000 .

[36]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[37]  Jorg Schluter,et al.  LES of jets in cross flow and its application to a gas turbine burner , 2000 .

[38]  Tim Colonius,et al.  Numerically nonreflecting boundary and interface conditions for compressible flow and aeroacoustic computations , 1997 .

[39]  F. Spellman Combustion Theory , 2020 .

[40]  W.,et al.  Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .

[41]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[42]  Parviz Moin,et al.  Direct simulations of turbulent flow using finite-difference schemes , 1991 .

[43]  Thierry Poinsot,et al.  Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows , 1994, Journal of Fluid Mechanics.

[44]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[45]  R. Verzicco,et al.  Large Eddy Simulation in Complex Geometric Configurations Using Boundary Body Forces , 2000 .

[46]  F. Egolfopoulos,et al.  Direct numerical simulation of heat release and NOx formation in turbulent nonpremixed flames , 1999 .

[47]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[48]  D. R. Stull JANAF thermochemical tables , 1966 .

[49]  Joel H. Ferziger,et al.  Simulations of flame-vortex interactions , 1991 .

[50]  Olivier Colin,et al.  Development of High-Order Taylor-Galerkin Schemes for LES , 2000 .

[51]  T Poinsot,et al.  LES predictions of mixing enhancement for Jets In Cross-Flows , 2022 .

[52]  John C. Strikwerda,et al.  Initial boundary value problems for incompletely parabolic systems , 1976 .

[53]  R. Koch,et al.  Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes , 2004 .