Web personalization integrating content semantics and navigational patterns

The amounts of information residing on web sites make users' navigation a hard task. To address this problem, web sites provide recommendations to the end users, based on similar users' navigational patterns mined from past visits. In this paper we introduce a recommendation method, which integrates usage data recorded in web logs, and the conceptual relationships between web documents. In the proposed framework, the usage-oriented URI representation of web pages and users' behavior is augmented with content-based semantics expressed using domain-ontology terms. Since the number of multilingual web sites is constantly increasing, we also propose an automatic method for uniformly characterizing a web site's documents using a common vocabulary. Both methods are integrated in the semantic web personalization system SEWeP.

[1]  George A. Miller,et al.  WordNet: A Lexical Database for the English Language , 2002 .

[2]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[3]  Bamshad Mobasher,et al.  Using Ontologies to Discover Domain-Level Web Usage Profiles , 2002 .

[4]  MAGDALINI EIRINAKI,et al.  Web mining for web personalization , 2003, TOIT.

[5]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[6]  Iraklis Varlamis,et al.  THESUS: Organizing Web document collections based on link semantics , 2003, The VLDB Journal.

[7]  Michalis Vazirgiannis,et al.  Archiving the Greek Web , 2004 .

[8]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[9]  Andreas Hotho,et al.  Conceptual User Tracking , 2003, AWIC.

[10]  Fionn Murtagh,et al.  Weighted Association Rule Mining using weighted support and significance framework , 2003, KDD '03.

[11]  B. Nguyen,et al.  Organizing Web Documents into Thematic Subsets Using an Ontology , 2003 .

[12]  Iraklis Varlamis,et al.  SEWeP: using site semantics and a taxonomy to enhance the Web personalization process , 2003, KDD '03.

[13]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[14]  Bettina Berendt,et al.  Understanding web usage at different levels of abstraction: coarsening and visualizing sequences , 2001 .

[15]  Hans-Peter Kriegel,et al.  Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.

[16]  Stuart E. Middleton,et al.  Ontological user profiling in recommender systems , 2004, TOIS.

[17]  Tao Luo,et al.  Integrating Web Usage and Content Mining for More Effective Personalization , 2000, EC-Web.