Calculation of acidic dissociation constants in water: solvation free energy terms. Their accuracy and impact

Three polarizable continuum models, DPCM, CPCM, and IEFPCM, have been applied to calculate free energy differences for nine neutral compounds and their anions. On the basis of solvation free energies, the pKa values were obtained for the compounds in question by using three thermodynamic cycles: one, involving the combined experimental and calculated data, as well as two other cycles solely with calculated data. This paper deals with the influence of factors such as the SCRF model applied, choice of a particular thermodynamic cycle, atomic radii used to build a cavity in the solvent (water), optimization of geometry in water, inclusion of electron correlation, and the dimension of the basis set on the solvation free energies and on the calculated pKa values.

[1]  George C. Shields,et al.  Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and Gaussian‐n models combined with CPCM continuum solvation methods , 2001 .

[2]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[3]  P. Svoronos,et al.  pKa of acetate in water: a computational study. , 2005, The journal of physical chemistry. A.

[4]  D. Chipman Computation of p K a from Dielectric Continuum Theory , 2002 .

[5]  J. Tomasi,et al.  Methylamines basicity calculations: in vacuo and in solution comparative analysis , 1992 .

[6]  L. Pratt,et al.  Absolute hydration free energies of ions, ion–water clusters, and quasichemical theory , 2003, physics/0303062.

[7]  G. Shields,et al.  Accurate pK(a) calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. , 2001, Journal of the American Chemical Society.

[8]  F. Javier Luque,et al.  Continuum solvation models: Dissecting the free energy of solvation , 2003 .

[9]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[10]  P. Seybold,et al.  Absolute pK(a) determinations for substituted phenols. , 2002, Journal of the American Chemical Society.

[11]  N. Sadlej-Sosnowska,et al.  Absolute calculations of acidity of C-substituted tetrazoles in solution. , 2005, The journal of physical chemistry. A.

[12]  Kenji Takahashi,et al.  Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron. , 2005, The journal of physical chemistry. A.

[13]  J. R. Pliego Thermodynamic cycles and the calculation of pKa , 2003 .

[14]  Andreas Klamt,et al.  First Principles Calculations of Aqueous pKa Values for Organic and Inorganic Acids Using COSMO-RS Reveal an Inconsistency in the Slope of the pKa Scale. , 2003, The journal of physical chemistry. A.

[15]  J. V. Coe,et al.  A New Cluster Pair Method of Determining Absolute Single Ion Solvation Energies Demonstrated in Water and Applied to Ammonia , 2002 .

[16]  Jacopo Tomasi,et al.  A new definition of cavities for the computation of solvation free energies by the polarizable continuum model , 1997 .

[17]  M. Tissandier,et al.  The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data , 1998 .

[18]  A. Rashin,et al.  Calculation of Absolute and Relative Acidities of Substituted Imidazoles in Aqueous Solvent , 1997 .

[19]  C. Cramer,et al.  Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. , 2006, The journal of physical chemistry. B.

[20]  R. Mitzner,et al.  pKa Values of Amines in Water from Quantum Mechanical Calculations Using a Polarized Dielectric Continuum Representation of the Solvent , 1997 .

[21]  Donald G Truhlar,et al.  SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. , 2005, Journal of chemical theory and computation.

[22]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[23]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[24]  Chang Kon Kim,et al.  THEORETICAL STUDIES OF SOLVENT EFFECT ON THE BASICITY OF SUBSTITUTED PYRIDINES , 1999 .

[25]  Jacopo Tomasi,et al.  PREDICTION OF THE PKA OF CARBOXYLIC ACIDS USING THE AB INITIO CONTINUUM-SOLVATION MODEL PCM-UAHF , 1998 .

[26]  Jacopo Tomasi,et al.  Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications , 1997 .

[27]  K N Houk,et al.  Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. , 2005, Journal of chemical theory and computation.

[28]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[29]  Kenneth R. Adam,et al.  New density functional and atoms in molecules method of computing relative pKa values in solution , 2002 .

[30]  Jacopo Tomasi,et al.  A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics , 1997 .

[31]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[32]  William A. Goddard,et al.  pKa Values of Guanine in Water: Density Functional Theory Calculations Combined with Poisson-Boltzmann Continuum-Solvation Model , 2003 .

[33]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[34]  J. R. Pliego,et al.  Gibbs energy of solvation of organic ions in aqueous and dimethyl sulfoxide solutions , 2002 .

[35]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[36]  D. Camaioni,et al.  Comment on "Accurate experimental values for the free energies of hydration of H+, OH-, and H3O+". , 2005, The journal of physical chemistry. A.

[37]  J. Riveros,et al.  The Cluster−Continuum Model for the Calculation of the Solvation Free Energy of Ionic Species , 2001 .

[38]  I. Chen,et al.  Computation of the influence of chemical substitution on the pKa of pyridine using semiempirical and ab initio methods , 2000 .

[39]  C. O. D. Silva,et al.  Ab Initio Calculations of Absolute pKa Values in Aqueous Solution I. Carboxylic Acids , 1999 .

[40]  W. Guida,et al.  Accurate Prediction of Acidity Constants in Aqueous Solution via Density Functional Theory and Self-Consistent Reaction Field Methods , 2002 .

[41]  Y. Mo,et al.  Studies of solvation free energies of methylammoniums and irregular basicity ordering of methylamines in aqueous solution by a combined discrete-continuum model , 2004 .

[42]  J. R. Pliego,et al.  Theoretical Calculation of pKa Using the Cluster−Continuum Model , 2002 .

[43]  J. R. Pliego,et al.  New values for the absolute solvation free energy of univalent ions in aqueous solution , 2000 .

[44]  W. Goddard,et al.  First Principles Calculation of pKa Values for 5-Substituted Uracils , 2001 .

[45]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[46]  Arieh Ben-Naim,et al.  Solvation thermodynamics of nonionic solutes , 1984 .

[47]  J. Tomasi,et al.  Ab initio study of solvated molecules: A new implementation of the polarizable continuum model , 1996 .

[48]  M. Namazian,et al.  Ab initio calculations of pKa values of some organic acids in aqueous solution , 2003 .

[49]  Carmay Lim,et al.  Absolute pKa calculations with continuum dielectric methods , 1991 .

[50]  Jan H. Jensen,et al.  Prediction and rationalization of protein pKa values using QM and QM/MM methods. , 2005, The journal of physical chemistry. A.

[51]  C. Cramer,et al.  Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. , 2006, The journal of physical chemistry. A.

[52]  David A. Dixon,et al.  Absolute Hydration Free Energy of the Proton from First-Principles Electronic Structure Calculations , 2001 .

[53]  M. Nascimento,et al.  Ab Initio Calculations of Absolute pKa Values in Aqueous Solution II. Aliphatic Alcohols, Thiols, and Halogenated Carboxylic Acids , 2000 .

[54]  Brian J. Smith,et al.  Calculation of aqueous dissociation constants of 1,2,4-triazole and tetrazole: A comparison of solvation models , 2002 .

[55]  Ralph G. Pearson,et al.  Ionization potentials and electron affinities in aqueous solution , 1986 .

[56]  Andreas Klamt,et al.  Treatment of the outlying charge in continuum solvation models , 1996 .

[57]  H. A. Abreu,et al.  pKa calculation of poliprotic acid: histamine , 2004 .

[58]  F. J. Luque,et al.  Theoretical Methods for the Description of the Solvent Effect in Biomolecular Systems. , 2000, Chemical reviews.