Intentional sampling by goal optimization with decoupling by stochastic perturbation

Intentional sampling methods are non-probabilistic procedures that select a group of individuals for a sample with the purpose of meeting specific prescribed criteria. Intentional sampling methods are intended for exploratory research or pilot studies where tight budget constraints preclude the use of traditional randomized representative sampling. The possibility of subsequently generalize statistically from such deterministic samples to the general population has been the issue of long standing arguments and debates. Nevertheless, the intentional sampling techniques developed in this paper explore pragmatic strategies for overcoming some of the real or perceived shortcomings and limitations of intentional sampling in practical applications.

[1]  Julio Michael Stern Decoupling, Sparsity, Randomization, and Objective Bayesian Inference , 2008, Cybern. Hum. Knowing.

[2]  R. Kipp Martin,et al.  Large scale linear and integer optimization - a unified approach , 1998 .

[3]  Roger Fletcher,et al.  Combinatorial Methods of Discrete Programming , 1982 .

[4]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[5]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[6]  I. Good Good Thinking: The Foundations of Probability and Its Applications , 1983 .

[7]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[8]  Sebastiaan A. Terwijn,et al.  Complexity and Randomness , 2003 .

[9]  László Béla Kovács Combinatorial Methods of Discrete Programming , 1998 .

[10]  H. Foerster Understanding Understanding , 2002, Springer New York.

[11]  C. de Bragança Pereira,et al.  Sequential Allocation to Balance Prognostic Factors in a Psychiatric Clinical Trial , 2009, Clinics.

[12]  J. Tenenbaum,et al.  Probability, algorithmic complexity, and subjective randomness , 2003 .

[13]  Charles R. Blair Sensitivity Analysis for Knapsack Problems: A Negative Result , 1998, Discret. Appl. Math..

[14]  D. Hand Cluster dissection and analysis: Helmuth SPATH Wiley, Chichester, 1985, 226 pages, £25.00 , 1986 .

[15]  Cristian S. Calude Randomness And Complexity, from Leibniz To Chaitin , 2007 .

[16]  Charles E. Blair,et al.  Integer and Combinatorial Optimization (George L. Nemhauser and Laurence A. Wolsey) , 1990, SIAM Rev..

[17]  Ken Brewer,et al.  Combined Survey Sampling Inference: Weighing Basu's Elephants , 2002 .

[18]  J. Jastrow,et al.  On small differences in sensation , 1884 .

[19]  H. Pastijn Handbook of critical issues in goal programming: Carlos Romero Pergamon Press, Oxford, 1990, xi + 124 pages, £25.00, ISBN 008 0406610 , 1992 .

[20]  Tapabrata Maiti,et al.  Bayesian Data Analysis (2nd ed.) (Book) , 2004 .

[21]  John M. Wilson,et al.  Advances in Sensitivity Analysis and Parametric Programming , 1998, J. Oper. Res. Soc..

[22]  Jadranka Skorin-Kapov,et al.  Non-linear integer programming: Sensitivity analysis for branch and bound , 1987 .

[23]  A Orman,et al.  Optimization of Stochastic Models: The Interface Between Simulation and Optimization , 2012, J. Oper. Res. Soc..

[24]  Bruce A. Murtagh,et al.  Advanced linear programming: Computation and practice , 1981 .

[25]  Newton C. A. da Costa,et al.  Goedel's Way: Exploits into an undecidable world , 2011 .

[26]  D. Basu,et al.  Statistical Information and Likelihood , 2011 .

[27]  Julio Michael Stern Paraconsistent Sensitivity Analysis for Bayesian Significance Tests , 2004, SBIA.

[28]  Alexander Schrijver,et al.  Handbook of Critical Issues in Goal Programming , 1992 .

[29]  Julio Michael Stern,et al.  Bayesian epistemic values: focus on surprise, measure probability! , 2014, Log. J. IGPL.

[30]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[31]  Peter Gacs,et al.  Lecture notes on descriptional complexity and randomness , 2014, ArXiv.

[32]  Thornton Page,et al.  The Scientist Speculates: An Anthology of Partly-baked Ideas , 1964 .

[33]  H. Spath Cluster Dissection and Analysis , 1985 .

[34]  Julio Michael Stern Spencer-Brown vs. Probability and Statistics: Entropy's Testimony on Subjective and Objective Randomness , 2011, Inf..

[35]  Julio Michael Stern Symmetry, Invariance and Ontology in Physics and Statistics , 2011, Symmetry.

[36]  H. Spath,et al.  9. Cluster Dissection and Analysis: Theory, Fortran Programs and Examples , 1985 .

[37]  Julio Michael Stern Constructive Verification, Empirical Induction, and Falibilist Deduction: A Threefold Contrast , 2011, Inf..

[38]  Ian Hacking,et al.  Telepathy: Origins of Randomization in Experimental Design , 1988, Isis.

[39]  R. Meyer Integer and mixed-integer programming models: General properties , 1975 .

[40]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[41]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[42]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[43]  H. C. Williams,et al.  Advanced Linear Programming , 1983, The Mathematical Gazette.

[44]  Joseph G. Ecker,et al.  Postoptimal analyses, parametric programming, and related topics: McGraw-Hill, Düsseldorf, 1979, xvii + 380 pages, DM 104.- , 1981 .