A Condition Number for Non‐Rigid Shape Matching

Despite the large amount of work devoted in recent years to the problem of non‐rigid shape matching, practical methods that can successfully be used for arbitrary pairs of shapes remain elusive. In this paper, we study the hardness of the problem of shape matching, and introduce the notion of the shape condition number, which captures the intuition that some shapes are inherently more difficult to match against than others. In particular, we make a connection between the symmetry of a given shape and the stability of any method used to match it while optimizing a given distortion measure. We analyze two commonly used classes of methods in deformable shape matching, and show that the stability of both types of techniques can be captured by the appropriate notion of a condition number. We also provide a practical way to estimate the shape condition number and show how it can be used to guide the selection of landmark correspondences between shapes. Thus we shed some light on the reasons why general shape matching remains difficult and provide a way to detect and mitigate such difficulties in practice.

[1]  Hans-Peter Seidel,et al.  Intrinsic Shape Matching by Planned Landmark Sampling , 2011, Comput. Graph. Forum.

[2]  Thomas A. Funkhouser,et al.  Fuzzy Geodesics and Consistent Sparse Correspondences For: eformable Shapes , 2010 .

[3]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[4]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[5]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[6]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[7]  Robert S. Boyer,et al.  A fast string searching algorithm , 1977, CACM.

[8]  Christoph von Tycowicz,et al.  Eigenmodes of Surface Energies for Shape Analysis , 2010, GMP.

[9]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[10]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[11]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[12]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[13]  Yosi Keller,et al.  Spectral Symmetry Analysis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Hans-Peter Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, CVPR.

[15]  Alexander M. Bronstein,et al.  Symmetries of non-rigid shapes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[16]  Marc Levoy,et al.  Geometrically stable sampling for the ICP algorithm , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[17]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[18]  Iasonas Kokkinos,et al.  SHREC'10 Track: Feature Detection and Description , 2010, 3DOR@Eurographics.

[19]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[20]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[22]  Leonidas J. Guibas,et al.  Shape Decomposition using Modal Analysis , 2009, Comput. Graph. Forum.

[23]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[24]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[25]  Mauro R. Ruggeri,et al.  Spectral-Driven Isometry-Invariant Matching of 3D Shapes , 2010, International Journal of Computer Vision.

[26]  Hans-Peter Seidel,et al.  Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data , 2009, TOGS.

[27]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[28]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[29]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[30]  Leonidas J. Guibas,et al.  Shape segmentation using local slippage analysis , 2004, SGP '04.

[31]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[32]  V.R.S Mani,et al.  Survey of Medical Image Registration , 2013 .

[33]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[34]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[35]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .