Algorithms for multi-extremal mathematical programming problems employing the set of joint space-filling curves

Some powerful algorithms for multi-extremal non-convex-constrained optimization problems are based on reducing these multi-dimensional problems to those of one dimension by applying Peano-type space-filling curves mapping a unit interval on the real axis onto a multi-dimensional hypercube. Here is presented and substantiated a new scheme simultaneously employing several joint Peano-type scannings which conducts the property of nearness of points in many dimensions to a property of nearness of pre-images of these points in one dimension significantly better than in the case of a scheme with a single space-filling curve. Sufficient conditions of global convergence for the new scheme are investigated.

[1]  Roman G. Strongin,et al.  Effective Algoritm for Global Optimization with Parallel Computations , 1988 .

[2]  Pierre Hansen,et al.  On Timonov's algorithm for global optimization of univariate Lipschitz functions , 1991, J. Glob. Optim..

[3]  Reiner Horst,et al.  Deterministic methods in constrained global optimization: Some recent advances and new fields of application , 1990 .

[4]  R. Strongin,et al.  A method for solving multi-extremal problems with non-convex constraints, that uses a priori information about estimates of the optimum , 1988 .

[5]  R. Strongin NUMERICAL METHODS FOR MULTIEXTREMAL NONLINEAR PROGRAMMING PROBLEMS WITH NONCONVEX CONSTRAINTS , 1985 .

[6]  Roman G. Strongin,et al.  The information approach to multiextremal optimization problems , 1989 .

[7]  Yurij G. Evtushenko,et al.  Numerical Optimization Techniques , 1985 .

[8]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[9]  A.H.G. Rinnooy Kan,et al.  Chapter IX Global optimization , 1989 .

[10]  Arthur R. Butz,et al.  Alternative Algorithm for Hilbert's Space-Filling Curve , 1971, IEEE Transactions on Computers.

[11]  R. G. Strongin,et al.  Minimization of multiextremal functions under nonconvex constraints , 1986 .

[12]  A. G. Sukharev Best sequential search strategies for finding an extremum , 1972 .

[13]  V. V. Korotkich Multilevel dichotomy algorithm in global optimization , 1990 .

[14]  Arthur R. Butz,et al.  Space Filling Curves and Mathematical Programming , 1968, Inf. Control..

[15]  Greg Forbes,et al.  GLOBAL OPTIMIZATION IN LENS DESIGN , 1992 .

[16]  R. G. Strongin,et al.  A global minimization algorithm with parallel iterations , 1990 .

[17]  Bruno Betrò,et al.  Bayesian methods in global optimization , 1991, J. Glob. Optim..

[18]  J. Pintér Branch- and bound algorithms for solving global optimization problems with Lipschitzian structure , 1988 .