Assessment of multispectral, -temporal and -angular MODIS data for tree cover mapping in the tundra-taiga transition zone

Abstract The latitudinal tree cover gradient is an important characteristic of the tundra–taiga transition zone stretching around the northern hemisphere. Accurately mapped continuous tree cover fields would enable the depiction of forest extent over this ecotone, which is sensitive to climate change, natural disturbances and human activities. The objective of this study was to assess the explanatory power of multispectral, -temporal and -angular MODIS data to estimate tree cover at the regional scale in northernmost Finland. The standard MODIS BRDF/Albedo (MOD43B) data products at approximately 1 km resolution were used. The tree cover was estimated using generalized linear models (GLM), which were calibrated and evaluated by high resolution biotope inventory data. The benefit of coupling the multispectral, -temporal and -angular variables was assessed by variation partitioning. The predicted tree cover fields were also used for the forest–non-forest classification over a larger region and compared with the forest extent of Finnish CORINE land cover 2000 data set. The results show that multitemporal and -angular variables can increase the accuracy of the tree cover estimates and mapping of the forest extent in comparison to the peak of the growing season nadir-view multispectral data. The season of the data acquisition also affect the model performance, the late-spring and early-summer data being superior to mid- and late-summer data. Although the pure effect of the multiangular variables i.e. the parameters of the MODIS BRDF model and selected multiangular indices were relatively small in the models, the inclusion of these data increased the accuracy of the tree cover estimates in the mires in comparison to the peak of the growing season nadir-view multispectral data and multitemporal variables.

[1]  Jonas Ardö,et al.  Spectral characterization and regression-based classification of forest damage in Norway spruce stands in the Czech Republic using Landsat Thematic Mapper data , 1995 .

[2]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[3]  Robert H. Fraser,et al.  Mapping northern land cover fractions using Landsat ETM , 2007 .

[4]  Miina Rautiainen,et al.  Coupling forest canopy and understory reflectance in the Arctic latitudes of Finland , 2007 .

[5]  Guoqing Sun,et al.  Assessing tundra–taiga boundary with multi-sensor satellite data , 2004 .

[6]  Gregory P. Asner,et al.  Ecological Research Needs from Multiangle Remote Sensing Data , 1998 .

[7]  N. Koutsias,et al.  Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping , 1998 .

[8]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[9]  Janne Heiskanen,et al.  Evaluation of global land cover data sets over the tundra–taiga transition zone in northernmost Finland , 2008 .

[10]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[11]  Robert H. Fraser,et al.  Mapping insect‐induced tree defoliation and mortality using coarse spatial resolution satellite imagery , 2005 .

[12]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[13]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[14]  Christopher B. Field,et al.  Mapping the land surface for global atmosphere‐biosphere models: Toward continuous distributions of vegetation's functional properties , 1995 .

[15]  R. Crawford,et al.  The tundra-taiga interface and its dynamics: concepts and applications. , 2002, Ambio.

[16]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[17]  Peter T. Wolter,et al.  Improved forest classification in the northern Lake States using multi-temporal Landsat imagery , 1995 .

[18]  J. Chen,et al.  Global mapping of foliage clumping index using multi-angular satellite data , 2005 .

[19]  Annika Hofgaard,et al.  The dynamics of the tundra-taiga boundary: an overview and suggested coordinated and integrated approach to research. , 2002, Ambio.

[20]  D. Lloyd,et al.  A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery , 1990 .

[21]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[22]  Ruth S. DeFries,et al.  Estimation of tree cover using MODIS data at global, continental and regional/local scales , 2005 .

[23]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[24]  A. Strahler,et al.  Classification of ASAS multiangle and multispectral measurements using artificial neural networks , 1996 .

[25]  Debra P. C. Peters,et al.  Differentiation of semi‐arid vegetation types based on multi‐angular observations from MISR and MODIS , 2007 .

[26]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[27]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[28]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[29]  Michael J. Barnsley,et al.  Global retrieval of bidirectional reflectance and albedo over land , 1997 .

[30]  J. Heiskanen Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data , 2006 .

[31]  Niklaus E. Zimmermann,et al.  A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data , 2005 .

[32]  Kenneth J. Ranson,et al.  Mapping of Siberian forest landscapes along the Yenisey transect with AVHRR , 2003 .

[33]  Mats Nilsson,et al.  Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass , 2002 .

[34]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[35]  R. Latifovic,et al.  Land cover mapping of North and Central America—Global Land Cover 2000 , 2004 .

[36]  P. Bicheron,et al.  Enhanced discrimination of boreal forest covers with directional reflectances from the airborne polarization and directionality of Earth reflectances (POLDER) instrument , 1997 .

[37]  J. Townshend,et al.  Global discrimination of land cover types from metrics derived from AVHRR pathfinder data , 1995 .

[38]  Robert Baxter,et al.  How will the tundra-taiga interface respond to climate change? , 2002, Ambio.

[39]  Ranga B. Myneni,et al.  The impact of gridding artifacts on the local spatial properties of MODIS data : Implications for validation, compositing, and band-to-band registration across resolutions , 2006 .

[40]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[41]  J. Townshend,et al.  Continuous fields of vegetation characteristics at the global scale at 1‐km resolution , 1999 .

[42]  Robert H. Fraser,et al.  Multi‐temporal Mapping of Burned Forest over Canada Using Satellite‐based Change Metrics , 2003 .

[43]  Annette J. Dobson,et al.  An introduction to generalized linear models , 1991 .

[44]  S. Sandmeier,et al.  A new approach to derive canopy structure information for boreal forests using spectral BRDF data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[45]  Yasushi Wakahara,et al.  A Method for Detecting , 1993 .

[46]  Xiaoxiong Xiong,et al.  Status of terra MODIS and aqua modis , 2003 .

[47]  T. Virtanen,et al.  How can the dynamics of the tundra-taiga boundary be remotely monitored? , 2002, Ambio.

[48]  Philip Lewis,et al.  On the information content of multiple view angle (MVA) images , 1997 .

[49]  Chandra Giri,et al.  A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets , 2005 .

[50]  Robert H. Fraser,et al.  A method for detecting large-scale forest cover change using coarse spatial resolution imagery , 2005 .

[51]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[52]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[53]  Kunkel Jm,et al.  Spontaneous subclavain vein thrombosis: a successful combined approach of local thrombolytic therapy followed by first rib resection. , 1989 .

[54]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[55]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[56]  R. Fernandes,et al.  Approaches to fractional land cover and continuous field mapping: A comparative assessment over the BOREAS study region , 2004 .

[57]  M. Hansen,et al.  A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products , 2000 .

[58]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[59]  Siamak Khorram,et al.  Land-cover change detection enhanced with generalized linear models , 1999 .

[60]  William Salas,et al.  A multivariable approach for mapping sub-pixel land cover distributions using MISR and MODIS: Application in the Brazilian Amazon region , 2003 .

[61]  S. Sandmeier,et al.  Structure Analysis and Classification of Boreal Forests Using Airborne Hyperspectral Brdf Data from Asas Imagery and Processing Techniques Have Also Been Used Potential for Combining Both High Spectral Resolution And , 2022 .

[62]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[63]  Pekka Hyvönen,et al.  Kuvioittaisten puustotunnusten ja toimenpide-ehdotusten estimointi k-lähimmän naapurin menetelmällä Landsat TM -satelliittikuvan, vanhan inventointitiedon ja kuviotason tukiaineiston avulla , 1970 .

[64]  Eric C. Brown de Colstoun,et al.  Improving global scale land cover classifications with multi-directional POLDER data and a decision tree classifier , 2006 .

[65]  R. D. Ramsey,et al.  Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the south‐western USA , 2005 .

[66]  Vlassova Tk Human impacts on the tundra-taiga zone dynamics: the case of the Russian lesotundra. , 2002 .

[67]  S. Phinn,et al.  Analysis of multi-date MISR measurements for forest and woodland communities, Queensland, Australia , 2007 .

[68]  Kaj Andersson,et al.  A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data , 1997 .