Extensive characterization and implementation of a family of three-qubit gates at the coherence limit

[1]  Yang Liu,et al.  Scalable algorithm simplification using quantum AND logic , 2021, Nature Physics.

[2]  S. Filipp,et al.  Single shot i-Toffoli gate in dispersively coupled superconducting qubits , 2021, Applied Physics Letters.

[3]  I. Siddiqi,et al.  Publisher Correction: High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits , 2021, Nature Physics.

[4]  R. Kueng,et al.  Projected Least-Squares Quantum Process Tomography , 2021, Quantum.

[5]  R. Blume-Kohout,et al.  A Taxonomy of Small Markovian Errors , 2021, PRX Quantum.

[6]  M. Geller Conditionally Rigorous Mitigation of Multiqubit Measurement Errors. , 2021, Physical review letters.

[7]  A. F. Kockum,et al.  Fast Multiqubit Gates through Simultaneous Two-Qubit Gates , 2021, PRX Quantum.

[8]  I. Chuang,et al.  Grand Unification of Quantum Algorithms , 2021, PRX Quantum.

[9]  R. Blume-Kohout,et al.  Efficient flexible characterization of quantum processors with nested error models , 2021, New Journal of Physics.

[10]  R. Schouten,et al.  A four-qubit germanium quantum processor , 2020, Nature.

[11]  Erik Nielsen,et al.  Gate Set Tomography , 2014, Quantum.

[12]  T. Sugiyama,et al.  Fast parametric two-qubit gates with suppressed residual interaction using the second-order nonlinearity of a cubic transmon , 2020 .

[13]  Blake R. Johnson,et al.  Implementation of XY entangling gates with a single calibrated pulse , 2020, Nature Electronics.

[14]  A. Greene,et al.  Realization of High-Fidelity CZ and ZZ -Free iSWAP Gates with a Tunable Coupler , 2020, 2011.01261.

[15]  Kenneth Goodenough,et al.  Protocols for Creating and Distilling Multipartite GHZ States With Bell Pairs , 2020, IEEE Transactions on Quantum Engineering.

[16]  M. Ansari,et al.  ZZ Freedom in Two-Qubit Gates , 2020, Physical Review Applied.

[17]  Tanay Roy,et al.  Programmable Superconducting Processor with Native Three-Qubit Gates , 2020 .

[18]  Margaret Martonosi,et al.  Resource-Efficient Quantum Computing by Breaking Abstractions , 2020, Proceedings of the IEEE.

[19]  S. Filipp,et al.  Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform , 2020, Physical Review Research.

[20]  C. K. Andersen,et al.  Improving the Performance of Deep Quantum Optimization Algorithms with Continuous Gate Sets , 2020, PRX Quantum.

[21]  D. Bacon,et al.  Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms. , 2020, Physical review letters.

[22]  Christopher N. Warren,et al.  Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm , 2019, Physical Review Applied.

[23]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[24]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[25]  Hannes Bernien,et al.  Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. , 2019, Physical review letters.

[26]  Matthew Alexander,et al.  A polar decomposition for quantum channels (with applications to bounding error propagation in quantum circuits) , 2019, Quantum.

[27]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[28]  Dmitri Maslov,et al.  Parallel entangling operations on a universal ion-trap quantum computer , 2018, Nature.

[29]  Yeong-Cherng Liang,et al.  Quantum fidelity measures for mixed states , 2018, Reports on progress in physics. Physical Society.

[30]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[31]  Arnaud Carignan-Dugas,et al.  From randomized benchmarking experiments to gate-set circuit fidelity: how to interpret randomized benchmarking decay parameters , 2018, New Journal of Physics.

[32]  Jonathan Leach,et al.  Quantum process tomography via completely positive and trace-preserving projection , 2018, Physical Review A.

[33]  Damian S. Steiger,et al.  Quantum Algorithm for Spectral Measurement with a Lower Gate Count. , 2017, Physical review letters.

[34]  Stefan Filipp,et al.  Analysis of a parametrically driven exchange-type gate and a two-photon excitation gate between superconducting qubits , 2017, 1708.02090.

[35]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[36]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[37]  E. Sjoqvist Nonadiabatic holonomic single-qubit gates in off-resonant $\Lambda$ systems , 2015, 1511.00911.

[38]  David G. Cory,et al.  Tensor networks and graphical calculus for open quantum systems , 2011, Quantum Inf. Comput..

[39]  A. Korotkov Error matrices in quantum process tomography , 2013, 1309.6405.

[40]  Shuangshuang Fu,et al.  Channel-state duality , 2013 .

[41]  M. Ying,et al.  Five two-qubit gates are necessary for implementing the Toffoli gate , 2013, 1301.3372.

[42]  Jay M. Gambetta,et al.  Self-Consistent Quantum Process Tomography , 2012, 1211.0322.

[43]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[44]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[45]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[46]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[47]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[48]  Klaus Mølmer,et al.  Multibit CkNOT quantum gates via Rydberg blockade , 2011, Quantum Inf. Process..

[49]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[50]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[51]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[52]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[53]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[54]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[55]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[56]  Robert Spalek,et al.  Quantum Fan-out is Powerful , 2005, Theory Comput..

[57]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[58]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[59]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[60]  I. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1996, quant-ph/9610001.

[61]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[62]  Robert Tibshirani,et al.  An Introduction to the Bootstrap CHAPMAN & HALL/CRC , 1993 .

[63]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[64]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[65]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .