Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector

In this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their properties from the point of view of classical electrodynamics, i.e., energy and momentum conservation, reciprocity, causality. Afterwards, we derive classical solutions for wave-propagation problems, assuming helical, spherical, and cylindrical symmetries of solutions. The results are supported by numerical simulations and their analysis. Discussion of relations between the TF Schrödinger equation and TF electrodynamics is included as well.

[1]  Fractional Operators Approach in Electromagnetic Wave Reflection Problems , 2007 .

[2]  José António Tenreiro Machado,et al.  Fractional order electromagnetics , 2006, Signal Process..

[3]  Manuel Duarte Ortigueira,et al.  From a generalised Helmholtz decomposition theorem to fractional Maxwell equations , 2015, Commun. Nonlinear Sci. Numer. Simul..

[4]  T. Stefański,et al.  Fundamental properties of solutions to fractional-order Maxwell's equations , 2020 .

[5]  Tomasz P. Stefanski,et al.  Signal propagation in electromagnetic media described by fractional-order models , 2020, Commun. Nonlinear Sci. Numer. Simul..

[6]  T. Stefański,et al.  Generalization of Kramers-Krönig relations for evaluation of causality in power-law media , 2021, Commun. Nonlinear Sci. Numer. Simul..

[7]  M. J. Lazo,et al.  Gauge invariant fractional electromagnetic fields , 2011, 1108.3493.

[8]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[9]  Q. Naqvi,et al.  Modelling of transmission through a chiral slab using fractional curl operator , 2006 .

[10]  B. L. Kogan,et al.  Utilization of Riemann-Silberstein Vectors in Electromagnetics , 2016 .

[11]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[12]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[13]  T. Stefański,et al.  On Applications of Fractional Derivatives in Electromagnetic Theory , 2020, 2020 23rd International Microwave and Radar Conference (MIKON).

[14]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[15]  An approach to introducing fractional integro-differentiation in classical electrodynamics , 2009 .

[16]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[17]  I. Bialynicki-Birula Exponential Localization of Photons , 1998 .

[18]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[19]  Alexander Puzenko,et al.  Damped oscillations in view of the fractional oscillator equation , 2002 .

[20]  Tomasz P. Stefanski,et al.  Electromagnetic-based derivation of fractional-order circuit theory , 2019, Commun. Nonlinear Sci. Numer. Simul..

[21]  Balance Equations of Electromagnetic Angular Momentum , 2017 .

[22]  Yuri Luchko Fractional wave equation and damped waves , 2012, 1205.1199.

[23]  Walton C. Gibson,et al.  The Method of Moments in Electromagnetics , 2007 .

[24]  Francesco Mainardi,et al.  Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation , 2012, Comput. Math. Appl..

[25]  V. E. Tarasov Fractional integro-differential equations for electromagnetic waves in dielectric media , 2009, 1107.5892.

[26]  J. Khalifeh,et al.  Maxwell's equations and electromagnetic Lagrangian density in fractional form , 2012 .

[27]  I. Bialynicki-Birula,et al.  Corrigendum: The role of the Riemann–Silberstein vector in classical and quantum theories of electromagnetism , 2012, 1211.2655.

[28]  J. Jiménez,et al.  Electromagnetic momentum balance equation and the force density in material media , 2012 .

[29]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[30]  F. Mainardi,et al.  Cauchy and Signaling Problems for the Time-Fractional Diffusion-Wave Equation , 2014, 1609.05443.

[31]  Fractional Boundary Conditions in Plane Waves Diffraction on a Strip , 2008 .

[32]  Roger F. Harrington,et al.  The Method of Moments in Electromagnetics , 1987 .

[33]  S. Westerlund Dead matter has memory , 1991 .

[34]  L. Silberstein Elektromagnetische Grundgleichungen in bivektorieller Behandlung , 1907 .

[35]  B. Achar,et al.  Time Fractional Schrodinger Equation Revisited , 2013 .

[36]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  F. Mainardi,et al.  Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation , 2013 .

[38]  Miguel Angel Moreles,et al.  Mathematical modelling of fractional order circuit elements and bioimpedance applications , 2017, Commun. Nonlinear Sci. Numer. Simul..

[39]  Fractional curl operator in reflection problems , 2004, 10th International Conference on Mathematical Methods in Electromagnetic Theory, 2004..

[40]  N. Engheta On the role of fractional calculus in electromagnetic theory , 2016 .

[41]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[42]  B. L. Kogan,et al.  The Riemann-Silberstein vectors theory and vector spherical expansion , 2017, 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS).

[43]  S. Westerlund,et al.  Capacitor theory , 1994 .

[44]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[45]  A. Iomin Fractional evolution in quantum mechanics , 2019, Chaos, Solitons & Fractals: X.

[46]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[47]  N. Engheta Fractional curl operator in electromagnetics , 1998 .

[48]  Zofia Bialynicka-Birula,et al.  Beams of electromagnetic radiation carrying angular momentum : The Riemann-Silberstein vector and the classical-quantum correspondence , 2005, quant-ph/0511011.

[49]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[50]  I. Bialynicki-Birula V Photon Wave Function , 1996 .

[51]  Nachtrag zur Abhandlung über „Elektromagnetische Grundgleichungen in bivektorieller Behandlung”︁ , 1907 .

[52]  T. Stefański,et al.  Simulation of Wave Propagation in Media Described by Fractional-Order Models , 2020, 2020 23rd International Microwave and Radar Conference (MIKON).

[53]  T. Stefański,et al.  On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory , 2020, Energies.

[54]  N. Balazs,et al.  The Energy-Momentum Tensor of the Electromagnetic Field inside Matter , 1953 .

[55]  M. Carlsson,et al.  A note on holomorphic functions and the Fourier-Laplace transform , 2017 .

[56]  Hosein Nasrolahpour,et al.  A note on fractional electrodynamics , 2012, Commun. Nonlinear Sci. Numer. Simul..

[57]  J. Cugnon The Photon Wave Function , 2011 .

[58]  Q. Naqvi,et al.  Complex and higher order fractional curl operator in electromagnetics , 2004 .

[59]  D. Baleanu,et al.  Fractional Electromagnetic Equations Using Fractional Forms , 2009 .

[60]  METHODOLOGICAL NOTES: On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate , 2010 .

[61]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[62]  D. Griffiths Resource Letter EM-1: Electromagnetic Momentum , 2012 .

[63]  G. H. B. Die Partiellen Differential-gleichungen der mathematischen Physik , 1901, Nature.

[64]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[65]  H. Nussenzveig Causality and dispersion relations , 2012, American Journal of Physics.