Towards a quantum interface between telecommunication and UV wavelengths: design and classical performance

AbstractWe propose and characterize a quantum interface between telecommunication wavelengths (1311 nm) and an Yb$${}^{+}$$+-dipole transition (369.5 nm) based on a second-order sum-frequency process in a PPKTP waveguide. An external (internal) conversion efficiency above 5 % (10 %) is shown using classical bright light.

[1]  Kumar,et al.  Observation of quantum frequency conversion. , 1992, Physical review letters.

[2]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[3]  F C Cruz,et al.  Sum-frequency generation of continuous-wave light at 194 nm. , 1997, Applied optics.

[4]  G. Leuchs,et al.  Collecting more than half the fluorescence photons from a single ion , 2012 .

[5]  Christian Hepp,et al.  Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. , 2012, Physical review letters.

[6]  Vitus Händchen,et al.  Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. , 2014, Physical review letters.

[7]  G. Alber,et al.  Generation of entangled matter qubits in two opposing parabolic mirrors , 2014, 1410.0919.

[8]  Lijun Ma,et al.  Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion , 2010, 1004.2686.

[9]  Zongyang Li,et al.  Quantum frequency down-conversion of bright amplitude-squeezed states. , 2014, Optics express.

[10]  M. Fontana,et al.  The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy , 1988 .

[11]  Dietrich Leibfried,et al.  Single-mode optical fiber for high-power, low-loss UV transmission. , 2014, Optics express.

[12]  L. Corner,et al.  Sum frequency generation at 309 nm using a violet and a near-IR DFB diode laser for detection of OH , 2002 .

[13]  G. S. Sokolovskii,et al.  574-647 nm wavelength tuning by second-harmonic generation from diode-pumped PPKTP waveguides. , 2015, Optics Letters.

[14]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[15]  F. Wong,et al.  Polarization-independent frequency conversion for quantum optical communication , 2006 .

[16]  O. Alibart,et al.  A photonic quantum information interface , 2005, Nature.

[17]  P. Kumar,et al.  Quantum frequency conversion. , 1990, Optics letters.

[18]  John D. Bierlein,et al.  Fabrication and characterization of optical waveguides in KTiOPO4 , 1987 .

[19]  R. Roussev Optical-frequency mixers in periodically poled lithium niobate: Materials, modeling and characterization , 2007 .

[20]  Angelo Gulinatti,et al.  Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. , 2012, Physical review letters.

[21]  Marius A Albota,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[22]  Olivier Pfister,et al.  Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide. , 2009, Optics letters.

[23]  H. Riedmatten,et al.  Storage of up-converted telecom photons in a doped crystal , 2014, 1407.3094.

[24]  Masato Koashi,et al.  Wide-band quantum interface for visible-to-telecommunication wavelength conversion. , 2011, Nature communications.

[25]  August Ferretti,et al.  Fabrication and Characterization of Optical Waveguides in KTiOPO 4 , 1987 .

[26]  D. Oh,et al.  Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection. , 1995, Optics letters.

[27]  Paul G. Kwiat,et al.  High efficiency single photon detection via frequency up-conversion , 2004 .

[28]  C R Phillips,et al.  Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. , 2011, Optics express.

[29]  Eiko Takaoka,et al.  Sellmeier and thermo-optic dispersion formulas for KTP. , 2002, Applied optics.

[30]  Fredrik Laurell,et al.  Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4 , 2004 .

[31]  F. Kärtner,et al.  Fiber-coupled balanced optical cross-correlator using PPKTP waveguides. , 2014, Optics express.

[32]  F. Laurell,et al.  Transmission Measurements in KTP and Isomorphic Compounds. , 2000, Applied optics.

[33]  Masashi Yoshimura,et al.  200-mW-average power ultraviolet generation at 0.193 microm in K2Al2B2O7. , 2003, Applied Optics.

[34]  I. Kityk,et al.  Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: theory and experiment. , 2010, The journal of physical chemistry. B.

[35]  Minoru Obara,et al.  Efficient sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual wavelength enhancement. , 2003, Optics letters.

[36]  Pan Qing,et al.  Long pulse, high energy output at 365 nm from an frequency-doubled Alexandrite laser , 2001 .

[37]  Michael G. Raymer,et al.  Manipulating the color and shape of single photons , 2012 .

[38]  F. Laurell,et al.  Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO(4). , 1998, Optics letters.

[39]  Jungsang Kim,et al.  Double-stage frequency down-conversion system for distribution of ion-photon entanglement over long distances , 2011, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[40]  S. Olmschenk,et al.  Quantum Logic Between Distant Trapped Ions , 2009, 0907.1702.

[41]  Carsten Langrock,et al.  Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. , 2004, Optics letters.