Enhanced copper-mediated (18)F-fluorination of aryl boronic esters provides eight radiotracers for PET applications.

[(18)F]FMTEB, [(18)F]FPEB, [(18)F]flumazenil, [(18)F]DAA1106, [(18)F]MFBG, [(18)F]FDOPA, [(18)F]FMT and [(18)F]FDA are prepared from the corresponding arylboronic esters and [(18)F]KF/K222 in the presence of Cu(OTf)2py4. The method was successfully applied using three radiosynthetic platforms, and up to 26 GBq of non-carrier added starting activity of (18)F-fluoride.

[1]  Steven H. Liang,et al.  Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(iii) ylides , 2016, Chemical science.

[2]  Sean M. Preshlock,et al.  (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. , 2016, Chemical reviews.

[3]  Allen F. Brooks,et al.  Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids , 2015, Organic letters.

[4]  Steven H. Liang,et al.  Synthesis of 18F-Arenes from Spirocyclic Iodonium(III) Ylides via Continuous-Flow Microfluidics. , 2015, Journal of fluorine chemistry.

[5]  F. Mottaghy,et al.  A Practical One-Pot Synthesis of Positron Emission Tomography (PET) Tracers via Nickel-Mediated Radiofluorination , 2015, ChemistryOpen.

[6]  M. Lythgoe,et al.  Sulfonium Salts as Leaving Groups for Aromatic Labelling of Drug-like Small Molecules with Fluorine-18 , 2015, Scientific Reports.

[7]  H. Endepols,et al.  Copper-mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale. , 2015, Chemistry.

[8]  Steven H. Liang,et al.  Iodonium Ylide–Mediated Radiofluorination of 18F-FPEB and Validation for Human Use , 2015, The Journal of Nuclear Medicine.

[9]  M. G. Campbell,et al.  Modern carbon-fluorine bond forming reactions for aryl fluoride synthesis. , 2015, Chemical reviews.

[10]  J. Passchier,et al.  A general copper-mediated nucleophilic 18F fluorination of arenes. , 2014, Angewandte Chemie.

[11]  H. Wey,et al.  Synthesis and imaging validation of [¹⁸F]MDL100907 enabled by Ni-mediated fluorination. , 2014, ACS chemical neuroscience.

[12]  Steven H. Liang,et al.  Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics , 2014, Nature Communications.

[13]  Eunsung Lee,et al.  Application of Palladium-Mediated 18F-Fluorination to PET Radiotracer Development: Overcoming Hurdles to Translation , 2013, PloS one.

[14]  Eunsung Lee,et al.  Nickel-mediated oxidative fluorination for PET with aqueous [18F] fluoride. , 2012, Journal of the American Chemical Society.

[15]  E. Hindié,et al.  Modern Nuclear Imaging for Paragangliomas: Beyond SPECT , 2012, The Journal of Nuclear Medicine.

[16]  S. Ametamey,et al.  18F‐Radiolabeling of Aromatic Compounds Using Triarylsulfonium Salts , 2012 .

[17]  Paul M. Matthews,et al.  Positron emission tomography molecular imaging for drug development. , 2012, British journal of clinical pharmacology.

[18]  Eunsung Lee,et al.  A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging , 2011, Science.

[19]  J. Carrasquillo,et al.  Use of 6‐[18F]‐fluorodopamine positron emission tomography (PET) as first‐line investigation for the diagnosis and localization of non‐metastatic and metastatic phaeochromocytoma (PHEO) , 2009, Clinical endocrinology.

[20]  A. Gee,et al.  Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. , 2008, Angewandte Chemie.

[21]  Pius August Schubiger,et al.  Molecular imaging with PET. , 2008, Chemical reviews.

[22]  K. Gulenchyn,et al.  6-l-18F-Fluorodihydroxyphenylalanine PET in Neuroendocrine Tumors: Basic Aspects and Emerging Clinical Applications* , 2008, Journal of Nuclear Medicine.

[23]  S. Purser,et al.  Fluorine in medicinal chemistry. , 2008, Chemical Society reviews.

[24]  A. Brownell,et al.  Synthesis and preliminary biological evaluation of 3‐[18F]fluoro‐5‐(2‐pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5 , 2007, Synapse.

[25]  F. Diederich,et al.  Fluorine in Pharmaceuticals: Looking Beyond Intuition , 2007, Science.

[26]  Christine Ryan,et al.  Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers , 2005, Synapse.

[27]  Christer Halldin,et al.  Preparation of highly specific radioactivity [18F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography. , 2005, Nuclear medicine and biology.

[28]  Yuji Nagai,et al.  Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: An imaging tool for glial cells in the brain , 2004, Synapse.

[29]  R. Krasikova,et al.  Preparation of [18F]Flumazenil, a Potential Radioligand for PET Imaging of Central Benzodiazepine Receptors, by Isotope Exchange , 2004 .

[30]  M E Phelps,et al.  Positron emission tomography provides molecular imaging of biological processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Wilhelm Hamkens,et al.  Remote controlled one-step production of 18F labeled butyrophenone neuroleptics exemplified by the synthesis of n.c.a. [18F] N-methylspiperone , 1995 .

[32]  K. Hamacher,et al.  Optimization studies concerning the direct nucleophilic fluorination of butyrophenone neuroleptics , 1993 .

[33]  C. Nahmias,et al.  Dopamine visualized in the basal ganglia of living man , 1983, Nature.

[34]  R. Blasberg,et al.  Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter , 2013, European Journal of Nuclear Medicine and Molecular Imaging.

[35]  Dean F Wong,et al.  The Role of Imaging in Proof of Concept for CNS Drug Discovery and Development , 2009, Neuropsychopharmacology.

[36]  A. Fischman Role of [18F]-dopa-PET imaging in assessing movement disorders. , 2005, Radiologic clinics of North America.

[37]  S. Shelton,et al.  Noninvasive assessment of aromatic L‐amino acid decarboxylase activity in aging rhesus monkey brain in vivo , 2001, Synapse.