Sonication-induced self-assembly of flexible tris(ureidobenzyl)amine: from dimeric aggregates to supramolecular gels.

Tris(ureidobenzyl)amine derivatives 1a,b form dimeric aggregates in apolar solution and in the solid state. Specifically, the meta-substituted tris(urea) 1a is able to transform into supramolecular gels in certain solvents via sonication.

[1]  Xiao-Li Zhao,et al.  Large-scale honeycomb microstructures constructed by platinum-acetylide gelators through supramolecular self-assembly. , 2012, Chemistry.

[2]  J. Steed,et al.  Anion tuning of chiral bis(urea) low molecular weight gels , 2012 .

[3]  Philip A. Gale,et al.  Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination , 2011, Journal of the American Chemical Society.

[4]  M. Arunachalam,et al.  Anion induced capsular self-assemblies. , 2011, Chemical communications.

[5]  J. Steed,et al.  Anion tuning and polymer templating in a simple low molecular weight organogelator. , 2011, Chemical communications.

[6]  Jonathan W. Steed,et al.  Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. , 2010, Chemical Society reviews.

[7]  Philip A. Gale,et al.  Tripodal transmembrane transporters for bicarbonate. , 2010, Chemical communications.

[8]  J. Steed,et al.  Shear induced gelation in a copper(II) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli , 2010 .

[9]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[10]  P. Ballester,et al.  Efficient self-sorting of a racemic tetra-urea calix[4]pyrrole into a single heterodimeric capsule. , 2010, Organic letters.

[11]  M. Alajarin,et al.  Self-assembly of tris(ureidobenzyl)amines: flexible bricks for robust architectures. , 2010, Chemical communications.

[12]  Jonathan W Steed,et al.  Anion-tuning of supramolecular gel properties , 2009, Nature Chemistry.

[13]  D. Bardelang,et al.  Ultrasound induced gelation: a paradigm shift , 2009 .

[14]  J. Steed,et al.  Metal ion and anion-based "tuning" of a supramolecular metallogel. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  M. Alajarin,et al.  Highly diastereoselective self-assembly of chiral tris(m-ureidobenzyl)amino capsules. , 2008, Chemical communications.

[16]  A. Flood,et al.  Strong, size-selective, and electronically tunable C-H...halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. , 2008, Journal of the American Chemical Society.

[17]  J. Steed,et al.  Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. , 2008, Chemical communications.

[18]  Biao Wu,et al.  Sulfate ion encapsulation in caged supramolecular structures assembled by second-sphere coordination. , 2008, Chemical communications.

[19]  B. Moyer,et al.  Sulfate recognition by persistent crystalline capsules with rigidified hydrogen-bonding cavities. , 2008, Angewandte Chemie.

[20]  Tomohiko Nakamura,et al.  Reversible sol–gel transition of a tris–urea gelator that responds to chemical stimuli , 2007 .

[21]  E. Suresh,et al.  Trapped inorganic phosphate dimer. , 2007, Chemical communications.

[22]  Tianyu Wang,et al.  Ultrasound induced formation of organogel from a glutamic dendron , 2007 .

[23]  Amitava Das,et al.  Rugby-ball-shaped sulfate-water-sulfate adduct encapsulated in a neutral molecular receptor capsule. , 2007, Inorganic chemistry.

[24]  Aurelia Pastor,et al.  Structure, stability and guest affinity of tris(3-ureidobenzyl)amine capsules in solution. , 2007, Chemistry.

[25]  Claire E. Stanley,et al.  Anion binding inhibition of the formation of a helical organogel. , 2006, Chemical communications.

[26]  L. Reddy,et al.  Hydrogen bonding in crystal structures of N,N'-bis(3-pyridyl)urea. Why is the N-H···O tape synthon absent in diaryl ureas with electron-withdrawing groups? , 2006 .

[27]  J. Steed,et al.  Modular nanometer-scale structuring of gel fibres by sequential self-organization. , 2005, Chemical communications.

[28]  Neralagatta M Sangeetha,et al.  Supramolecular gels: functions and uses. , 2005, Chemical Society reviews.

[29]  D. Schollmeyer,et al.  Hydrogen bonded dimers of triurea derivatives of triphenylmethanes. , 2005, Organic letters.

[30]  K. Sakurai,et al.  Solvent/gelator interactions and supramolecular structure of gel fibers in cyclic bis-urea/primary alcohol organogels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[31]  A. Heeres,et al.  Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. , 2004, Angewandte Chemie.

[32]  A. Hamilton,et al.  Water gelation by small organic molecules. , 2004, Chemical reviews.

[33]  J. Steed,et al.  Dimeric self-assembling capsules derived from the highly flexible tribenzylamine skeleton. , 2002, The Journal of organic chemistry.

[34]  E. W. Meijer,et al.  Unexpected entropy-driven ring-opening polymerization in a reversible supramolecular system. , 2001, Journal of the American Chemical Society.

[35]  A. Spek,et al.  Tripodal Tris‐Urea Derivatives as Gelators for Organic Solvents , 2000 .

[36]  R. Vreeker,et al.  Rheology and thermotropic properties of bis-urea-based organogels in various primary alcohols , 2000 .

[37]  B. Feringa,et al.  Geminal bis-ureas as gelators for organic solvents: gelation properties and structural studies in solution and in the gel state , 2000, Chemistry.

[38]  Arduini,et al.  Dimeric capsules by the self-assembly of triureidocalix , 2000, Chemistry.

[39]  A. Spek,et al.  Cyclic Bis‐Urea Compounds as Gelators for Organic Solvents , 1999 .

[40]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.