Higher Semiadditive Algebraic K-Theory and Redshift

We define higher semiadditive algebraic K-theory, a variant of algebraic K-theory that takes into account higher semiadditive structure, as enjoyed for example by the K(n)and T(n)-local categories. We prove that it satisfies a form of the redshift conjecture. Namely, that if R is a ring spectrum of height ≤ n, then its semiadditive algebraic K-theory is of height ≤ n + 1. Under further hypothesis on R, which are satisfied for example by the Lubin-Tate spectrum En, we show that its semiadditive algebraic K-theory is of height exactly n + 1. Finally, we show that for any p-invertible ring spectrum, its semiadditive algebraic K-theory coincides with the T(1)-localization of its ordinary algebraic K-theory.

[1]  Hongyi Chu,et al.  Homotopy-coherent algebra via Segal conditions , 2019, Advances in Mathematics.

[2]  A. Louis,et al.  Documenta Mathematica , 1996 .

[3]  L. Hesselholt,et al.  Higher Algebra , 1937, Nature.

[4]  R. Fritsch,et al.  Journal of Pure and Applied Algebra the Core of a Ring Day, B., a Reflection Theorem for Closed Categories Rudolf Fritsch , 2011 .

[5]  Jacob Lurie,et al.  Higher Topos Theory (AM-170) , 2009 .

[6]  Tomer M. Schlank,et al.  Chromatic Cyclotomic Extensions , 2021, 2103.02471.

[7]  H. Busemann Advances in mathematics , 1961 .

[8]  Ib Madsen,et al.  On the K-theory of local fields , 1999, math/9910186.

[9]  Lior Yanovski The Monadic Tower for ∞-Categories , 2021, Journal of Pure and Applied Algebra.

[10]  R. Haugseng Iterated spans and classical topological field theories , 2014, 1409.0837.

[11]  John Rognes,et al.  Algebraic K-theory of topological K-theory , 2002 .

[12]  Saul Glasman Day convolution for infinity-categories , 2013, 1308.4940.

[13]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[14]  Proceedings of the London Mathematical Society , 1877, Nature.

[15]  Arild Stubhaug Acta Mathematica , 1886, Nature.

[16]  D. Kaledin Spectral Mackey functors and equivariant algebraic K-Theory ( I ) , 2016 .

[17]  C. Barwick Multiplicative Structures on Algebraic K-Theory , 2013, 1304.4867.

[18]  A. Blumberg,et al.  Uniqueness of the multiplicative cyclotomic trace , 2011, 1103.3923.

[19]  Peter Scholze,et al.  Topological cyclic homology , 2019, Handbook of Homotopy Theory.

[20]  T. Schlank,et al.  Ambidexterity in chromatic homotopy theory , 2018, Inventiones mathematicae.

[21]  A. Mathew,et al.  N ov 2 02 0 DESCENT AND VANISHING IN CHROMATIC ALGEBRAIC K-THEORY VIA GROUP ACTIONS , 2020 .

[22]  B. M. Fulk MATH , 1992 .

[23]  Yonatan Harpaz Ambidexterity and the universality of finite spans , 2017, Proceedings of the London Mathematical Society.