Learning By Error-Driven Decomposition

In this paper we describe a new selforganizing decomposition technique for learning high-dimensional mappings. Problem decomposition is performed in an error-driven manner, such that the resulting subtasks (patches) are equally well approximated. Our method combines an unsupervised learning scheme (Feature Maps [Koh84]) with a nonlinear approximator (Backpropagation [RHW86]). The resulting learning system is more stable and e ective in changing environments than plain backpropagation and much more powerful than extended feature maps as proposed by [RS88, RMS89]. Extensions of our method give rise to active exploration strategies for autonomous agents facing unknown environments. The appropriateness of our general purpose method will be demonstrated with an example from mathematical function approximation.