Separation algorithms for 0-1 knapsack polytopes

Valid inequalities for 0-1 knapsack polytopes often prove useful when tackling hard 0-1 Linear Programming problems. To generate such inequalities, one needs separation algorithms for them, i.e., routines for detecting when they are violated. We present new exact and heuristic separation algorithms for several classes of inequalities, namely lifted cover, extended cover, weight and lifted pack inequalities. Moreover, we show how to improve a recent separation algorithm for the 0-1 knapsack polytope itself. Extensive computational results, on MIPLIB and OR Library instances, show the strengths and limitations of the inequalities and algorithms considered.

[1]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[2]  Diego Klabjan,et al.  The complexity of cover inequality separation , 1998, Oper. Res. Lett..

[3]  D.,et al.  THE COMPLEXITY OF COVER INEQUALITY SEPARATION , 1998 .

[4]  Laurence A. Wolsey,et al.  Solving Mixed Integer Programming Problems Using Automatic Reformulation , 1987, Oper. Res..

[5]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[6]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[7]  Osman Oguz,et al.  On separating cover inequalities for the multidimensional knapsack problem , 2007, Comput. Oper. Res..

[8]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[9]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[10]  Michel Vasquez,et al.  Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem , 2008, J. Comb. Optim..

[11]  E. Andrew Boyd,et al.  Generating Fenchel Cutting Planes for Knapsack Polyhedra , 1993, SIAM J. Optim..

[12]  Manfred W. Padberg,et al.  Improving LP-Representations of Zero-One Linear Programs for Branch-and-Cut , 1991, INFORMS J. Comput..

[13]  Laurence A. Wolsey,et al.  Technical Note - Facets and Strong Valid Inequalities for Integer Programs , 1976, Oper. Res..

[14]  Martin W. P. Savelsbergh,et al.  Lifted Cover Inequalities for 0-1 Integer Programs: Complexity , 1999, INFORMS J. Comput..

[15]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[16]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[17]  Adam N. Letchford,et al.  Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem , 2008, Eur. J. Oper. Res..

[18]  Ricardo Fukasawa,et al.  On the exact separation of mixed integer knapsack cuts , 2007, Math. Program..

[19]  E. Balas,et al.  Facets of the Knapsack Polytope From Minimal Covers , 1978 .

[20]  Martin W. P. Savelsbergh,et al.  Lifted Cover Inequalities for 0-1 Integer Programs: Computation , 1998, INFORMS J. Comput..

[21]  Marcus Poggi de Aragão,et al.  Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree problem over a large extended formulation , 2007, Math. Program..

[22]  E. Andrew Boyd A pseudopolynomial network flow formulation for exact knapsack separation , 1992, Networks.

[23]  Alper Atamtürk Cover and Pack Inequalities for (Mixed) Integer Programming , 2005, Ann. Oper. Res..

[24]  Manfred W. Padberg (1,k)-configurations and facets for packing problems , 1980, Math. Program..

[25]  C. Helmberg,et al.  Cutting Plane Algorithms for Semidefinite Relaxations , 1997 .

[26]  E. Andrew Boyd,et al.  Fenchel Cutting Planes for Integer Programs , 1994, Oper. Res..

[27]  Egon Balas,et al.  Facets of the knapsack polytope , 1975, Math. Program..

[28]  Alper Atamtürk,et al.  Sequence Independent Lifting for Mixed-Integer Programming , 2004, Oper. Res..

[29]  Thorsten Koch,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Miplib 2003 , 2022 .

[30]  Michel Minoux,et al.  A scheme for exact separation of extended cover inequalities and application to multidimensional knapsack problems , 2002, Oper. Res. Lett..

[31]  E. Andrew Boyd,et al.  Cutting planes for mixed-integer knapsack polyhedra , 1998, Math. Program..

[32]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[33]  Laurence A. Wolsey,et al.  Faces for a linear inequality in 0–1 variables , 1975, Math. Program..

[34]  Eitan Zemel,et al.  Easily Computable Facets of the Knapsack Polytope , 1989, Math. Oper. Res..

[35]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[36]  Robert Weismantel,et al.  On the 0/1 knapsack polytope , 1997, Math. Program..

[37]  C. E. Ferreira,et al.  Solving Multiple Knapsack Problems by Cutting Planes , 1996, SIAM J. Optim..

[38]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .