Dense bipartite circulants and their routing via rectangular twisted torus

Whereas the maximum number of vertices in a four-regular circulant of diameter a is 2a^2+2a+1, the bound turns out to be 2a^2 if the condition of bipartiteness is imposed. Tzvieli presented a family of @j(a) such dense bipartite circulants on 2a^2 vertices for each a>=3, where @j(a) denotes the number of positive integers less than or equal to @?12(a-1)@? that are coprime with a. The present paper shows that each of those graphs is obtainable from the 2axa rectangular twisted torus by appropriately trading a maximum of 2a edges for as many new edges. The underlying structural similarity between the two graphs leads to a simple intuitive routing algorithm for the circulants. The result closely parallels the routing in dense nonbipartite circulants on 2a^2+2a+1 vertices. Additional results include a set of vertex-disjoint paths between every pair of distinct vertices in the circulants, and a proof that the 2axa rectangular twisted torus itself is probably not a circulant.

[1]  Hovhannes A. Harutyunyan,et al.  Broadcasting in Optimal Bipartite Double Loop Graphs , 2006, Tenth International Conference on Information Visualisation (IV'06).

[2]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[3]  Ahmed Sameh,et al.  The Illiac IV system , 1972 .

[4]  Deep Medhi,et al.  Network routing - algorithms, protocols, and architectures , 2007 .

[5]  W. Imrich,et al.  Handbook of Product Graphs, Second Edition , 2011 .

[6]  Johannes H. Hattingh,et al.  PRODUCTS OF CIRCULANT GRAPHS , 1990 .

[7]  Javier Navaridas,et al.  Twisted Torus Topologies for Enhanced Interconnection Networks , 2010, IEEE Transactions on Parallel and Distributed Systems.

[8]  D. Frank Hsu,et al.  On the k-diameter of k-regular k-connected graphs , 1994, Discret. Math..

[9]  Marie-Claude Heydemann,et al.  Cayley graphs and interconnection networks , 1997 .

[10]  Sara Nicoloso,et al.  Isomorphism Testing for Circulant Graphs , 2007 .

[11]  Agustin Arruabarrena,et al.  Optimal Distance Networks of Low Degree for Parallel Computers , 1991, IEEE Trans. Computers.

[12]  Yue-Li Wang,et al.  Generalized Recursive Circulant Graphs , 2012, IEEE Transactions on Parallel and Distributed Systems.

[13]  F. Göbel,et al.  Cyclic Graphs , 2000, Discret. Appl. Math..

[14]  Mikhail E. Muzychuk,et al.  Ádám's Conjecture is True in the Square-Free Case , 1995, J. Comb. Theory, Ser. A.

[15]  Ralph Tindell,et al.  Circulants and their connectivities , 1984, J. Graph Theory.

[16]  Frank K. Hwang,et al.  A survey on multi-loop networks , 2003, Theor. Comput. Sci..

[17]  Guihai Chen,et al.  Optimal Layouts of Midimew Networks , 1996, IEEE Trans. Parallel Distributed Syst..

[18]  Chak-Kuen Wong,et al.  A Combinatorial Problem Related to Multimodule Memory Organizations , 1974, JACM.

[19]  Jhing-Fa Wang,et al.  Reliable circulant networks with minimum transmission delay , 1985 .

[20]  Janez Zerovnik,et al.  An optimal message routing algorithm for circulant networks , 2006, J. Syst. Archit..

[21]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[22]  Brian Alspach,et al.  Isomorphism of circulant graphs and digraphs , 1979, Discret. Math..

[23]  Dvora Tzvieli Minimal diameter double-loop networks. I. Large infinite optimal families , 1991, Networks.

[24]  Pranava K. Jha,et al.  Hamiltonian Decomposition of the Rectangular Twisted Torus , 2012, IEEE Transactions on Parallel and Distributed Systems.

[25]  Tomaz Pisanski,et al.  Computing the Diameter in Multiple-Loop Networks , 1993, J. Algorithms.

[26]  Ramón Beivide,et al.  Perfect Codes for Metrics Induced by Circulant Graphs , 2007, IEEE Transactions on Information Theory.

[27]  Ramón Beivide,et al.  Modeling Toroidal Networks with the Gaussian Integers , 2008, IEEE Transactions on Computers.

[28]  Clemens Heuberger,et al.  On planarity and colorability of circulant graphs , 2003, Discret. Math..

[29]  Bernard Mans,et al.  On Routing in Circulant Graphs , 1999, COCOON.

[30]  D. Frank Hsu,et al.  Distributed Loop Computer Networks: A Survey , 1995, J. Parallel Distributed Comput..

[31]  Cruz Izu,et al.  Dense Gaussian Networks: Suitable Topologies for On-Chip Multiprocessors , 2006, International Journal of Parallel Programming.