Planck 2015 results: XIX. Constraints on primordial magnetic fields

We predict and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs derived from different combinations of Planck data products, depending on the specific effect that is analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss, with different bounds depending on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1Mpc < 4:4 nG (where B1Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95 % confidence level, assuming zero helicity, and B1Mpc < 5:6 nG when we consider a maximally helical field. For nearly scaleinvariant PMFs we obtain B1Mpc < 2:1 nG and B1Mpc < 0:7 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1Mpc < 2:8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B1Mpc < 4:5 nG, whereas the the compensated-scalar bispectrum gives B1Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1Mpc < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfv´ en waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data.

G. W. Pratt | C. B. Netterfield | J. Aumont | D. L. Clements | J. R. Bond | L. Toffolatti | J. J. Bock | F. Pasian | B. P. Crill | J. E. Gudmundsson | W. A. Holmes | G. Savini | W. Hovest | A. Catalano | M. Frailis | J. Borrill | A. Gruppuso | E. Hivon | L. Montier | G. Morgante | P. Natoli | F. Piacentini | M. Remazeilles | R. Stompor | A. Coulais | F. Cuttaia | L. Terenzi | O. Dor'e | M. Maris | S. Galeotta | M. Bersanelli | C. Burigana | N. Mandolesi | R. Rebolo | E. P. S. Shellard | S. Plaszczynski | E. Pointecouteau | F. Nati | L. Pagano | W. C. Jones | V. Stolyarov | G. Polenta | F. Pajot | I. Ristorcelli | F. Perrotta | S. R. Hildebrandt | C. A. Oxborrow | G. Maggio | A. Moneti | D. Santos | H. K. Eriksen | A. J. Banday | C. R. Lawrence | S. Mitra | A. Mennella | P. B. Lilje | D. Herranz | D. L. Harrison | S. Masi | B. D. Wandelt | J.-F. Cardoso | K. Ganga | I. K. Wehus | N. Oppermann | D. Hanson | G. Lagache | L. Bonavera | P. Vielva | G. Helou | N. Aghanim | X. Dupac | J. P. Rachen | A. Zacchei | D. Maino | L. Perotto | M. Douspis | C. Rosset | A. Benoit | F.-X. D'esert | J. F. Mac'ias-P'erez | J. Delabrouille | S. Matarrese | L. Valenziano | A. Benoit-L'evy | A. Zonca | T. S. Kisner | M. Shiraishi | E. Calabrese | M. Arnaud | M. Tomasi | A. H. Jaffe | O. Forni | G. Patanchon | F. Levrier | H. C. Chiang | S. Donzelli | F. Couchot | M. Juvela | J. P. Leahy | P. M. Lubin | A. Gregorio | R. B. Barreiro | B. Rusholme | D. Scott | A. Ducout | C. Renault | D. Munshi | R. Keskitalo | E. Franceschi | A. Hornstrup | P. McGehee | L. Danese | C. Baccigalupi | L. Mendes | H. U. Norgaard-Nielsen | J. M. Diego | G. Hurier | M. Lattanzi | M. Kunz | H. Kurki-Suonio | V. Pettorino | L. Popa | A. Renzi | J. Tuovinen | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | M. Frailis | A. Zacchei | S. Colombi | J. Lesgourgues | A. Melchiorri | V. Pettorino | P. McGehee | J. Rubino-Mart'in | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | B. Wandelt | F. Bouchet | S. Matarrese | J. Bock | J. Borrill | P. Bernardis | A. Jaffe | C. Netterfield | R. Stompor | J. Bond | B. Crill | K. Ganga | W. Jones | F. Piacentini | S. Prunet | G. Efstathiou | M. Juvela | J. Diego | A. Moss | A. Benoit-Lévy | R. Rebolo | A. Coulais | A. Gregorio | P. Christensen | M. Ashdown | C. Lawrence | B. Rusholme | G. Helou | E. Pierpaoli | R. Davis | T. Kisner | T. Jaffe | H. Eriksen | F. Couchot | S. Plaszczynski | H. Nørgaard-Nielsen | R. Davies | J. Leahy | P. Ade | M. Arnaud | J. Aumont | E. Battaner | A. Benoit | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | L. Bonavera | M. Bucher | C. Burigana | R. C. Butler | A. Catalano | A. Chamballu | H. Chiang | D. Clements | L. Colombo | A. Curto | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | F. D'esert | H. Dole | S. Donzelli | O. Dor'e | X. Dupac | F. Finelli | A. Fraisse | E. Franceschi | S. Galeotta | M. Giard | Y. Giraud-H'eraud | J. Gonz'alez-Nuevo | K. M. G'orski | S. Gratton | A. Gruppuso | D. Hanson | D. Harrison | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | D. Herranz | S. Hildebrandt | W. Holmes | A. Hornstrup | W. Hovest | K. Huffenberger | E. Keihanen | R. Keskitalo | J. Knoche | G. Lagache | A. Lahteenmaki | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | D. Maino | N. Mandolesi | M. Maris | P. Martin | E. Mart'inez-Gonz'alez | P. Meinhold | L. Mendes | A. Mennella | M. Migliaccio | S. Mitra | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | F. Nati | P. Natoli | F. Noviello | I. Novikov | F. Paci | L. Pagano | F. Pajot | D. Paoletti | G. Patanchon | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | D. Pietrobon | E. Pointecouteau | G. Polenta | L. Popa | G. Pratt | G. Prezeau | J. Puget | J. Rachen | M. Remazeilles | C. Renault | A. Renzi | I. Ristorcelli | G. Rocha | C. Rosset | G. Roudier | M. Sandri | D. Santos | G. Savini | D. Scott | M. Seiffert | E. Shellard | L. Spencer | R. Sudiwala | R. Sunyaev | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | G. Umana | J. Valiviita | B. Tent | P. Vielva | F. Villa | L. Wade | I. Wehus | D. Yvon | A. Zonca | E. Calabrese | K. Dolag | F. Elsner | S. Galli | E. Gjerløw | J. Gudmundsson | M. Lattanzi | J. Murphy | M. Savelainen | V. Stolyarov | N. Bartolo | J. Cardoso | J. Chluba | C. Combet | A. Ducout | J. Fergusson | A. Frejsel | G. Hurier | F. Levrier | G. Maggio | A. Mangilli | M. Rossetti | S. Masi | E. Florido | S. Church | D. Novikov | N. Oppermann | F. Arroja | M. Ballardini | J. Kim | D. Molinari | B. Ruiz-Granados | M. Shiraishi | A. Bonaldi | F. Villa | M. Sandri | M. Ashdown | M. Ballardini | N. Bartolo | K. Benabed | J.-P. Bernard | P. Bielewicz | F. R. Bouchet | L. P. L. Colombo | C. Combet | A. Curto | R. J. Davis | P. de Bernardis | A. de Rosa | G. de Zotti | G. Efstathiou | F. Elsner | T. A. Ensslin | F. Finelli | A. A. Fraisse | S. Galli | M. Giard | J. Gonz'alez-Nuevo | F. K. Hansen | E. Keihanen | A. Lahteenmaki | J.-M. Lamarre | A. Lasenby | M. Liguori | M. L'opez-Caniego | A. Mangilli | P. G. Martin | E. Mart'inez-Gonz'alez | A. Melchiorri | M. Migliaccio | M.-A. Miville-Deschenes | D. Molinari | A. Moss | P. Naselsky | D. Paoletti | O. Perdereau | J.-L. Puget | M. Reinecke | G. Rocha | M. Rossetti | G. Roudier | J. A. Rubino-Mart'in | B. Ruiz-Granados | M. Savelainen | A.-S. Suur-Uski | J. A. Tauber | M. Tristram | J. Valiviita | P. R. Christensen | Planck Collaboration P. A. R. Ade | E. Battaner | M. Bucher | A. Chamballu | S. Colombi | R. D. Davies | H. Dole | S. Gratton | M. Hobson | K. M. Huffenberger | T. R. Jaffe | J. Knoche | R. Leonardi | J. Lesgourgues | P. R. Meinhold | D. Mortlock | J. A. Murphy | F. Noviello | I. Novikov | F. Paci | M. Piat | E. Pierpaoli | D. Pietrobon | S. Prunet | M. D. Seiffert | L. D. Spencer | R. Sudiwala | R. Sunyaev | D. Sutton | J.-F. Sygnet | M. Tucci | J. Tuovinen | B. Van Tent | L. A. Wade | D. Yvon | K. Dolag | Y. Giraud-H'eraud | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | M. Linden-Vornle | G. Pr'ezeau | G. Umana | J. Fergusson | A. Frejsel | E. Gjerlow | F. Arroja | J. Kim | E. Florido | J. Chluba | S. Church | D. Novikov | J. Bock | D. Scott | P. Christensen | P. Mcgehee | D. Scott | D. Scott | G. Rocha | J. Murphy | G. Pr'ezeau | J. Bond | D. Harrison | C. Lawrence | C. Rosset | A.-S. Suur-Uski | D. Hanson

[1]  Bharat Ratra,et al.  Cosmological 'seed' magnetic field from inflation , 1991 .

[2]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results XII . Full focal plane simulations , 2016 .

[3]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[4]  J. Chluba,et al.  Towards a complete treatment of the cosmological recombination problem , 2010, 1010.3631.

[5]  M. Shiraishi,et al.  First observational constraints on tensor non-Gaussianity sourced by primordial magnetic fields from cosmic microwave background , 2013, 1304.7277.

[6]  J. Fergusson Efficient optimal non-Gaussian CMB estimators with polarization , 2014, 1403.7949.

[7]  David N. Spergel,et al.  Measuring Primordial Non-Gaussianity in the Cosmic Microwave Background , 2003, astro-ph/0305189.

[8]  A. Tevzadze,et al.  Primordial magnetic field limits from cosmological data , 2010, 1009.2094.

[9]  M. Shiraishi Parity violation of primordial magnetic fields in the CMB bispectrum , 2012, 1202.2847.

[10]  A. Lewis,et al.  Constraining Primordial Magnetism , 2010, 1006.4242.

[11]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[12]  A. Moss,et al.  Tilted physics: A cosmologically dipole-modulated sky , 2010, 1011.2990.

[13]  Gabriele Giovannini,et al.  Clusters of galaxies: observational properties of the diffuse radio emission , 2012, The Astronomy and Astrophysics Review.

[14]  T. R. Seshadri,et al.  Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales. , 2009, Physical review letters.

[15]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[16]  Y. Maravin,et al.  Primordial Magnetic Helicity Constraints from WMAP Nine-Year Data , 2014, 1408.0351.

[17]  T. Kahniashvili,et al.  CMB two- and three-point correlation functions from Alfv\'en waves , 2010, 1010.4543.

[18]  Dongsu Ryu,et al.  The First Magnetic Fields , 1999, astro-ph/9912260.

[19]  T. Ensslin,et al.  REALMAF: Magnetic power spectra from Faraday rotation maps , 2015 .

[20]  Tanja Schultz To be Defined , 2016, ICPRAM.

[21]  Thuy Mai Wilkinson Microwave Anisotropy Probe (WMAP) , 2015 .

[22]  T. R. Seshadri,et al.  Primordial magnetic field limits from the CMB trispectrum: Scalar modes and Planck constraints , 2013, 1312.5308.

[23]  M. Gasperini,et al.  String Theory and Fundamental Interactions , 2008 .

[24]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[25]  T. L. Landecker,et al.  An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz. Observations , 2005, astro-ph/0510456.

[26]  Hu,et al.  Thermalization and spectral distortions of the cosmic background radiation. , 1993, Physical review. D, Particles and fields.

[27]  M. Liguori,et al.  The CMB bispectrum , 2010, 1006.1642.

[28]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[29]  Limits on possible magnetic fields at nucleosynthesis time , 1994, astro-ph/9409010.

[30]  Primordial magnetic fields and causality , 2003, astro-ph/0305059.

[31]  R. Durrer,et al.  A large scale coherent magnetic field: interactions with free streaming particles and limits from the CMB , 2011, 1102.5235.

[32]  T. Ensslin,et al.  Magnetic power spectra from Faraday rotation maps REALMAF and its use on Hydra A , 2009, 0912.3930.

[33]  Primordial magnetic fields in the post‐recombination era and early reionization , 2005 .

[34]  Faraday Rotation of the Cosmic Microwave Background Polarization and Primordial Magnetic Field Properties , 2004, astro-ph/0405420.

[35]  D. Semikoz,et al.  FERMI/LAT OBSERVATIONS OF 1ES 0229+200: IMPLICATIONS FOR EXTRAGALACTIC MAGNETIC FIELDS AND BACKGROUND LIGHT , 2011, 1112.2534.

[36]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[37]  Microwave Background Signatures of a Primordial Stochastic Magnetic Field , 2001, astro-ph/0105504.

[38]  Kerstin E. Kunze,et al.  Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background , 2014, 1501.00142.

[39]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[40]  I. Wasserman On the origins of galaxies, galactic angular momenta, and galactic magnetic fields. , 1978 .

[41]  General parity-odd CMB bispectrum estimation , 2014, 1403.4222.

[42]  G. Ghisellini,et al.  Extreme TeV blazars and the intergalactic magnetic field , 2010, 1009.1048.

[43]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .

[44]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[45]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2011, 1106.5494.

[46]  Martin White,et al.  The Damping Tail of Cosmic Microwave Background Anisotropies , 1997 .

[47]  R. Durrer,et al.  Cosmological magnetic fields: their generation, evolution and observation , 2013 .

[48]  K. Kunze CMB anisotropies in the presence of a stochastic magnetic field , 2010, 1007.3163.

[49]  J. Barrow,et al.  Magnetohydrodynamics in the Early Universe and the Damping of Non-linear Alfven Waves , 1997, astro-ph/9712083.

[50]  K. Kunze Cosmological magnetic fields , 2009, 1307.2153.

[51]  T. Kajino,et al.  New Constraints on the Primordial Magnetic Field , 2010, 1001.2012.

[52]  M. Giovannini,et al.  Magnetized CMB observables: a dedicated numerical approach , 2007, 0712.3483.

[53]  Damping of cosmic magnetic fields , 1996, astro-ph/9606080.

[54]  THE MAGNETIZED UNIVERSE , 2003, astro-ph/0312614.

[55]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[56]  C. Bonvin,et al.  CMB temperature anisotropy at large scales induced by a causal primordial magnetic field , 2010, 1004.1405.

[57]  F. Finelli,et al.  CMB Constraints on a Stochastic Background of Primordial Magnetic Fields , 2010, 1005.0148.

[58]  Charles D. Dermer,et al.  TIME DELAY OF CASCADE RADIATION FOR TeV BLAZARS AND THE MEASUREMENT OF THE INTERGALACTIC MAGNETIC FIELD , 2010, 1011.6660.

[59]  C. A. Oxborrow,et al.  Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds , 2015, 1506.06660.

[60]  Tanmay Vachaspati,et al.  Magnetic fields from cosmological phase transitions , 1991 .

[61]  R. Sunyaev,et al.  The evolution of CMB spectral distortions in the early Universe , 2011, 1109.6552.

[62]  Ievgen Vovk,et al.  Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars , 2010, Science.

[63]  F. Finelli,et al.  CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity , 2014, 1412.1836.

[64]  E. Komatsu,et al.  Constraining primordial magnetic fields with distortions of the black-body spectrum of the cosmic microwave background: pre- and post-decoupling contributions , 2013, 1309.7994.

[65]  G. W. Pratt,et al.  Planck2015 results: XXVI. The SecondPlanckCatalogue of Compact Sources , 2015, 1507.02058.

[66]  A. Neronov,et al.  Magnetic Fields in the Large Scale Structure from Faraday Rotation measurements , 2013, 1305.1450.

[67]  A. Lewis,et al.  Massive neutrinos and magnetic fields in the early universe , 2009, 0911.2714.

[68]  G. W. Pratt,et al.  Planck 2015 results - VI. LFI mapmaking , 2015, 1502.01585.

[69]  L. Feretti,et al.  MAGNETIC FIELDS IN CLUSTERS OF GALAXIES , 2004, astro-ph/0410182.

[70]  CMB anisotropies due to cosmological magnetosonic waves , 2006, astro-ph/0611247.

[71]  E.P.S. Shellard,et al.  General CMB and primordial bispectrum estimation: Mode expansion, map making, and measures of F NL , 2009, 0912.5516.

[72]  On the effect of cyclotron emission on the spectral distortions of the cosmic microwave background , 2005, astro-ph/0505259.

[73]  C. Caprini Primordial magnetic fields and gravitational waves , 2006 .

[74]  C. A. Oxborrow,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.05956.

[75]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[76]  R. Klessen,et al.  Reionization - A probe for the stellar population and the physics of the early universe. , 2008, 0807.3802.

[77]  Keitaro Takahashi,et al.  Cosmic microwave background bispectrum of tensor passive modes induced from primordial magnetic fields , 2011, 1103.4103.

[78]  B polarization of the CMB from Faraday rotation , 2004, astro-ph/0405396.

[79]  J. Lesgourgues,et al.  Using big bang nucleosynthesis in cosmological parameter extraction from the cosmic microwave background: a forecast for PLANCK , 2008 .

[80]  E. Battaner,et al.  Constraining the regular Galactic magnetic field with the 5-year WMAP polarization measurements at 22 GHz , 2010, 1006.5573.

[81]  Lisa Harvey-Smith,et al.  Estimating extragalactic Faraday rotation , 2014, 1404.3701.

[82]  M. Giovannini,et al.  Generalized CMB initial conditions with pre-equality magnetic fields , 2008, 0802.1053.

[83]  F. Finelli,et al.  The cosmic microwave background temperature bispectrum from scalar perturbations induced by primordial magnetic fields , 2009, 0903.1420.

[84]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[85]  M. Liguori,et al.  Observed parity-odd CMB temperature bispectrum , 2014, 1409.0265.

[86]  Generation of density perturbations by primordial magnetic fields , 1994, astro-ph/9412070.

[87]  R. B. Barreiro,et al.  Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.

[88]  Keitaro Takahashi,et al.  Cosmic microwave background bispectrum of vector modes induced from primordial magnetic fields , 2010, 1009.3632.

[89]  F. Finelli,et al.  Impact of stochastic primordial magnetic fields on the scalar contribution to cosmic microwave background anisotropies , 2008, 0803.1246.

[90]  Jens Chluba,et al.  Effect of primordial magnetic fields on the ionization history , 2015, 1503.04827.

[91]  C. A. Oxborrow,et al.  Planck 2015 results. VII. High Frequency Instrument data processing: Time-ordered information and beams , 2015 .

[92]  Non-Gaussianity from cosmic magnetic fields , 2005, astro-ph/0506570.

[93]  Planck 2015 results. V. LFI calibration , 2015, 1505.08022.

[94]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[95]  L. Pogosian,et al.  Signatures of kinetic and magnetic helicity in the cosmic microwave background radiation , 2002 .

[96]  A. M. Taylor,et al.  EGMF Constraints from Simultaneous GeV-TeV Observations of Blazars , 2011, 1101.0932.

[97]  F. Finelli,et al.  Constraints on a stochastic background of primordial magnetic fields with WMAP and South Pole Telescope data , 2012, 1208.2625.

[98]  Abraham Loeb,et al.  Faraday Rotation of Microwave Background Polarization by a Primordial Magnetic Field , 1996 .

[99]  T. R. Seshadri,et al.  Primordial magnetic field limits from cosmic microwave background bispectrum of magnetic passive scalar modes , 2010, 1009.2724.

[100]  T. R. Seshadri,et al.  Cosmic microwave background trispectrum and primordial magnetic field limits. , 2011, Physical review letters.

[101]  J. Vallée Cosmic magnetic fields – as observed in the Universe, in galactic dynamos, and in the Milky Way , 2004 .

[102]  L. Widrow,et al.  Origin of galactic and extragalactic magnetic fields , 2002, astro-ph/0207240.

[103]  J. Barrow,et al.  Small-scale microwave background anisotropies arising from tangled primordial magnetic fields , 2002, astro-ph/0205312.

[104]  B. Wandelt,et al.  Efficient Wiener filtering without preconditioning , 2012, 1210.4931.

[105]  Tensor microwave anisotropies from a stochastic magnetic field , 1999, astro-ph/9911040.

[106]  Field,et al.  Limits on a Lorentz- and parity-violating modification of electrodynamics. , 1990, Physical review. D, Particles and fields.

[107]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[108]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[109]  Bharat Ratra,et al.  CMB temperature anisotropy from broken spatial isotropy due to a homogeneous cosmological magnetic field , 2008, 0807.4239.

[110]  G. De Zotti,et al.  Formation and evolution of early distortions of the microwave background spectrum : a numerical study , 1991 .

[111]  G. Farrar,et al.  THE GALACTIC MAGNETIC FIELD , 2012, 1210.7820.

[112]  C. A. Oxborrow,et al.  Planck 2015 results - XXVIII. The Planck Catalogue of Galactic cold clumps , 2015, 1502.01599.

[113]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[114]  T. R. Seshadri,et al.  Small-scale cosmic microwave background polarization anisotropies due to tangled primordial magnetic fields , 2003, astro-ph/0303014.

[115]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[116]  M. V. Fernandes,et al.  Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S , 2014, 1405.0488.

[117]  G. W. Pratt,et al.  Planck 2015 results: III. LFI systematic uncertainties , 2015, 1507.08853.

[118]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[119]  L. Moscardini,et al.  Constraining primordial magnetic fields with future cosmic shear surveys , 2012, 1209.6332.

[120]  Wenlei Chen,et al.  Search for CP violating signature of intergalactic magnetic helicity in the gamma-ray sky , 2013, 1310.4826.

[121]  MAGNETIC FIELDS AND LARGE SCALE STRUCTURE IN A HOT UNIVERSE. I. GENERAL EQUATIONS , 1996, astro-ph/9602097.

[122]  Levon Pogosian,et al.  CMB Faraday rotation as seen through the Milky Way , 2013, 1305.7225.

[123]  T. Kahniashvili,et al.  Effects of cosmological magnetic helicity on the cosmic microwave background , 2005, astro-ph/0503709.

[124]  M. Shiraishi Polarization bispectrum for measuring primordial magnetic fields , 2013, 1308.2531.

[125]  C. Ferrari,et al.  Observations of Extended Radio Emission in Clusters , 2008, 0801.0985.

[126]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .

[127]  E. Battaner,et al.  Magnetic fields and large scale structure in a hot Universe , 2004 .

[128]  M. Sloth,et al.  Consistency relation for cosmic magnetic fields , 2012, 1207.4187.

[129]  M. Shiraishi,et al.  Optimal limits on primordial magnetic fields from CMB temperature bispectrum of passive modes , 2012, 1201.0376.

[130]  Reexamining the constraint on the helium abundance from the CMB , 2006, astro-ph/0601099.

[131]  P. Naselsky,et al.  Cosmological Alfvén waves in the recent CMB data, and the observational bound on the primordial vector perturbation , 2009, 0903.1930.

[132]  F. Finelli,et al.  The scalar, vector and tensor contributions of a stochastic background of magnetic fields to cosmic microwave background anisotropies , 2008, 0811.0230.

[133]  Simon J. Lilly,et al.  Strong magnetic fields in normal galaxies at high redshift , 2008, Nature.

[134]  Anthony Challinor,et al.  CAMB: Code for Anisotropies in the Microwave Background , 2011 .

[135]  Cyclotron emission effect on CMB spectral distortions , 2006, astro-ph/0601259.

[136]  R. Durrer,et al.  Magnetic fields from inflation: The CMB temperature anisotropies , 2013, 1308.3348.

[137]  C. A. Oxborrow,et al.  Planck 2015 results. XVIII. Background geometry & topology , 2015, 1502.01593.

[138]  Y. Maravin,et al.  Faraday rotation limits on a primordial magnetic field from Wilkinson Microwave Anisotropy Probe five-year data , 2008, 0806.1876.

[139]  C. Bonvin Impact of a causal primordial magnetic field on the Sachs Wolfe Effect , 2010, 1005.3332.

[140]  T. R. Seshadri,et al.  Small-scale CMB polarization anisotropies due to tangled primordial magnetic fields , 2003 .

[141]  Cosmological Magnetic Field: A Fossil of Density Perturbations in the Early Universe , 2006, Science.

[142]  L. Pogosian,et al.  Primordial magnetism in the CMB: Exact treatment of Faraday rotation and WMAP7 bounds , 2011, 1106.1438.

[143]  R. Cai,et al.  Acoustic signatures in the Cosmic Microwave Background bispectrum from primordial magnetic fields , 2010, 1006.2985.

[144]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[145]  Julian Borrill,et al.  POLARBEAR constraints on cosmic birefringence and primordial magnetic fields , 2015, 1509.02461.

[146]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[147]  M. Kamionkowski,et al.  Non-Gaussianity from self-ordering scalar fields , 2010, 1003.0672.

[148]  Jason X. Prochaska,et al.  An 84-μG magnetic field in a galaxy at redshift z = 0.692 , 2008, Nature.

[149]  R. B. Barreiro,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.

[150]  Bharat Ratra,et al.  Faraday rotation of the cosmic microwave background polarization by a stochastic magnetic field , 2004, astro-ph/0409767.

[151]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[152]  L. Widrow,et al.  Magnetic Fields in the Large-Scale Structure of the Universe , 2011, 1109.4055.

[153]  E. Komatsu,et al.  Signatures of anisotropic sources in the squeezed-limit bispectrum of the cosmic microwave background , 2013, 1302.3056.

[154]  R. Durrer,et al.  Microwave background anisotropies from Alfvén waves , 1998, astro-ph/9807089.

[155]  C. Tchernin,et al.  Measuring the correlation length of intergalactic magnetic fields from observations of gamma-ray induced cascades , 2013, 1307.2753.

[156]  Turner,et al.  Inflation-produced, large-scale magnetic fields. , 1988, Physical review. D, Particles and fields.

[157]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[158]  R. Durrer,et al.  Gravitational wave production: A Strong constraint on primordial magnetic fields , 2001, astro-ph/0106244.

[159]  T. Kajino,et al.  Effects of a primordial magnetic field on low and high multipoles of the cosmic microwave background , 2008, 0801.2572.

[160]  Cosmological magnetic fields vs. CMB , 2004, astro-ph/0405184.

[161]  Magnetized initial conditions for CMB anisotropies , 2004, astro-ph/0409594.