Crustal motions in Great Britain: evidence from continuous GPS, absolute gravity and Holocene sea level data

Two independent continuous global positioning system (CGPS) processing strategies, based on a double-difference regional network and a globally transformed precise point positioning solution, provide horizontal and vertical crustal motion estimates for Great Britain. Absolute gravity and geological information from late Holocene sea level data further constrain the vertical motion estimates. For 40 CGPS stations we estimate station velocities and associated uncertainties using maximum likelihood estimation, assuming the presence of white and coloured noise. Horizontal station velocity estimates agree to <1 mm yr(-1) between the two CGPS processing strategies and closely follow predicted plate motions. Residual velocities, generally < 1 mm yr(-1), follow no regular pattern, that is, there is no discernible internal deformation, nor any dependence on station monumentation or time-series length. Vertical station velocity estimates for the two CGPS processing strategies agree to similar to 1 mm yr(-1), but show an offset of similar to 1 mm yr(-1) with respect to the absolute gravity (AG) estimates. We attribute this offset to a bias related to known issues in current CGPS results and correct for it by AG-alignment of our CGPS estimates of vertical station velocity. Both CGPS estimates and AG-aligned CGPS estimates of present-day vertical crustal motions confirm the pattern of subsidence and uplift in Great Britain derived from Holocene sea level data for the last few thousand years: ongoing subsidence on Shetland, uplift in most areas of Scotland, and subsidence in large areas of England and Wales.

[1]  G. Blewitt,et al.  On the stability of a geodetic no‐net‐rotation frame and its implication for the International Terrestrial Reference Frame , 2006 .

[2]  S. Marriott,et al.  Holocene sea-level change in the Severn Estuary, southwest England: a diatom-based sea-level transfer function for macrotidal settings , 2007 .

[3]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[4]  W. Peltier,et al.  Global to local scale parameters determining relative sea-level changes and the post-glacial isostatic adjustment of Great Britain , 2002 .

[5]  K. Lambeck,et al.  Glacial rebound of the British Isles—III. Constraints on mantle viscosity , 1996 .

[6]  S. Mazzotti,et al.  Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge‐GPS analysis , 2008 .

[7]  O. Francis,et al.  Uncertainty of absolute gravity measurements , 2005 .

[8]  L.J. Donnelly,et al.  A review of coal mining induced fault reactivation in Great Britain , 2006, Quarterly Journal of Engineering Geology and Hydrogeology.

[9]  W. Peltier,et al.  On postglacial geoid subsidence over the equatorial oceans , 1991 .

[10]  F. N. Teferle Strategies for long-term monitoring of tide gauges using GPS , 2003 .

[11]  E. Cardellach,et al.  Global distortion of GPS networks associated with satellite antenna model errors , 2007 .

[12]  Zuheir Altamimi,et al.  Intraplate deformation in western Europe deduced from an analysis of the International Terrestrial Reference Frame 1997 (ITRF97) velocity field , 2001 .

[13]  Kurt Lambeck,et al.  Glacial rebound of the British Isles—II. A high-resolution, high-precision model , 1993 .

[14]  J. Milliman,et al.  Sea-Level Rise and Coastal Subsidence , 1996 .

[15]  M. Bouin,et al.  Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide , 2007 .

[16]  Felix Norman Teferle,et al.  Glacial isostatic adjustment of the British Isles: new constraints from GPS measurements of crustal motion , 2009 .

[17]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[18]  Peter Steigenberger,et al.  Impact of higher‐order ionospheric terms on GPS estimates , 2005 .

[19]  Michael B. Heflin,et al.  Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data , 2002 .

[20]  Galina Dick,et al.  Impact of GPS satellite antenna offsets on scale changes in global network solutions , 2005 .

[21]  K. Lambeck,et al.  Relative sea‐level change and postglacial isostatic adjustment along the coast of south Devon, United Kingdom , 2008 .

[22]  J. Mitrovica,et al.  On the origin of late Holocene sea-level highstands within equatorial ocean basins , 2002 .

[23]  S. Williams The effect of coloured noise on the uncertainties of rates estimated from geodetic time series , 2003 .

[24]  Felix Norman Teferle,et al.  An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities , 2007 .

[25]  G. Curry Fossils and tectonics along the Highland Boundary Fault in Scotland , 1986, Journal of the Geological Society.

[26]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[27]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities , 1997 .

[28]  I. Shennan,et al.  Relative sea‐level changes, glacial isostatic modelling and ice‐sheet reconstructions from the British Isles since the Last Glacial Maximum , 2006 .

[29]  J. Nocquet,et al.  Crustal velocity field of western Europe from permanent GPS array solutions, 1996–2001 , 2003 .

[30]  Geoffrey Blewitt,et al.  Effect of annual signals on geodetic velocity , 2002 .

[31]  M. Stewart,et al.  Constraints on early sinistral displacements along the Great Glen Fault Zone, Scotland: structural setting, U–Pb geochronology and emplacement of the syn‐tectonic Clunes tonalite , 2001, Journal of the Geological Society.

[32]  J. Beavan Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments , 2005 .

[33]  Simon D. P. Williams,et al.  CATS: GPS coordinate time series analysis software , 2008 .

[34]  Yosuke Aoki,et al.  Vertical deformation of the Japanese islands, 1996–1999 , 2003 .

[35]  Michael B. Heflin,et al.  The effect of the second order GPS ionospheric correction on receiver positions , 2003 .

[36]  L. Humphries A review of relative sea level rise caused by mining-induced subsidence in the coastal zone: some implications for increased coastal recession , 2001 .

[37]  Donald F. Argus,et al.  Defining the translational velocity of the reference frame of Earth , 2007 .

[38]  Yehuda Bock,et al.  Error analysis of continuous GPS position time series , 2004 .

[39]  R. Nikolaidis Observation of geodetic and seismic deformation with the Global Positioning System , 2002 .

[40]  T. van Dam,et al.  Atmospheric pressure loading corrections applied to GPS data at the observation level , 2005 .

[41]  I. Shapiro,et al.  A spectral formalism for computing three‐dimensional deformations due to surface loads: 1. Theory , 1994 .

[42]  I. Shennan Holocene crustal movements and sea‐level changes in Great Britain , 2010 .

[43]  W. Peltier Chapter 4 Global glacial isostatic adjustment and modern instrumental records of relative sea level history , 2001 .

[44]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[45]  K. Larson,et al.  Measuring postglacial rebound with GPS and absolute gravity , 2000 .

[46]  T. P. Yunck,et al.  Origin of the International Terrestrial Reference Frame , 2003 .

[47]  Freysteinn Sigmundsson,et al.  Current plate movements across the Mid-atlantic ridge determined from 5 years of continuous GPS measurements in Iceland , 2006 .

[48]  W. Peltier,et al.  On the postglacial isostatic adjustment of the British Isles and the shallow viscoelastic structure of the Earth , 2002 .

[49]  P. Woodworth,et al.  A review of the trends observed in British Isles mean sea level data measured by tide gauges , 1999 .

[50]  Timothy M. Niebauer,et al.  A new generation of absolute gravimeters , 1995 .

[51]  T. James,et al.  New constraints on Laurentide postglacial rebound from absolute gravity measurements , 2001 .

[52]  H. Dragert,et al.  Crustal uplift and sea level rise in northern Cascadia from GPS, absolute gravity, and tide gauge data , 2007 .

[53]  H. Hopewell Environmental and instrumental effects on high precision gravimetry : a case study in Britain , 1999 .

[54]  J. Johansson,et al.  Space-Geodetic Constraints on Glacial Isostatic Adjustment in Fennoscandia , 2001, Science.

[55]  F. N. Teferle,et al.  Modelling the glacial isostatic adjustment of the UK region , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  K. Lambeck Glacial rebound of the British Isles—I. Preliminary model results , 1993 .

[57]  Terry Quinn,et al.  Sixth International Comparison of Absolute Gravimeters (ICAG-2001) , 2002 .

[58]  R. Edwards Mid-to late-Holocene relative sea-level change in southwest Britain and the influence of sediment compaction , 2006 .

[59]  Markus Rothacher,et al.  The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences , 1999 .

[60]  J. Nocquet,et al.  Deformation of the North American plate interior from a decade of continuous GPS measurements , 2006 .

[61]  Carine Bruyninx,et al.  Regional densification of the IGS in europe using the EUREF permanent GPS network (EPN) , 2001 .

[62]  D. Genske,et al.  Unusual cases of mining subsidence from Great Britain, Germany and Colombia , 2005 .

[63]  Y. Bock,et al.  Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series , 2006 .

[64]  Yehuda Bock,et al.  GPS measurements of current crustal movements along the Dead Sea Fault , 2004 .

[65]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[66]  M. Bevis,et al.  Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion , 2005 .

[67]  Hans-Peter Plag,et al.  A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements , 2008 .

[68]  S. Williams,et al.  Absolute gravity measurements at UK tide gauges , 2001 .

[69]  D. MacMillan Rate Difference Between VLBI and GPS Reference Frame Scales , 2004 .

[70]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake , 1997 .

[71]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[72]  Peter Steigenberger,et al.  Reprocessing of a global GPS network , 2006 .

[73]  Hans-Peter Plag,et al.  Comparison of GPS analysis strategies for high-accuracy vertical land motion , 2008 .

[74]  Alan Dodson,et al.  Application of the dual-CGPS concept to monitoring vertical land movements at tide gauges ☆ , 2002 .

[75]  J. Hinderer,et al.  A search for the ratio between gravity variation and vertical displacement due to a surface load , 2007 .

[76]  Jan M. Johansson,et al.  An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia , 2007 .

[77]  A H Dodson,et al.  Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[78]  M. A. Morrison,et al.  The Great Glen Fault: a major vertical lithospheric boundary , 1998, Journal of the Geological Society.

[79]  John Langbein,et al.  Correlated errors in geodetic time series: Implications for time‐dependent deformation , 1997 .

[80]  J. Wahr,et al.  Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic earth , 1995 .

[81]  Christopher H. Scholz,et al.  Vertical deformation of the Japanese islands , 2002 .

[82]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[83]  M. Hernández‐Pajares,et al.  Second-order ionospheric term in GPS : Implementation and impact on geodetic estimates , 2007 .

[84]  Yehuda Bock,et al.  Instantaneous global plate motion model from 12 years of continuous GPS observations , 2004 .

[85]  Yehuda Bock,et al.  Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis , 2006 .

[86]  T. James,et al.  Long-term monitoring by absolute gravimetry: Tides to postglacial rebound , 2006 .

[87]  Richard Bingley,et al.  Trends in Uk Mean Sea Level Revisited , 2008 .

[88]  Y. Zong,et al.  Holocene sea‐level changes and crustal movements in Morecambe Bay, northwest England , 1996 .

[89]  Peter Steigenberger,et al.  Influence of mapping function parameters on global GPS network analyses: Comparisons between NMF and IMF , 2006 .

[90]  I. Shennan,et al.  Holocene land‐ and sea‐level changes in Great Britain , 2002 .

[91]  I. Shapiro,et al.  A spectral formalism for computing three‐dimensional deformations due to surface loads: 2. Present‐day glacial isostatic adjustment , 1994 .

[92]  O. Francis,et al.  Analysis of results of the International Comparison of Absolute Gravimeters in Walferdange (Luxembourg) of November 2003 , 2005 .

[93]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[94]  S. Hreinsdóttir,et al.  Constraints on vertical crustal motion for long baselines in the central Mediterranean region using continuous GPS , 2007 .