Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone

Nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammonium-sulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gas- and aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario) atmospheric compositions. A set of sensitivity experiments was carried out to quantify the individual impact of emission- and physical climate change on nitrate aerosol formation. We found that future nitrate aerosol loads depend most strongly on changes that may occur in the ammonia sources. Furthermore, microphysical processes that lead to aerosol mixing play a very important role in sulphate and nitrate aerosol formation. The role of nitrate aerosols as climate change driver is analyzed and set in perspective to other aerosol and ozone forcings under pre-industrial, present day and future conditions. In the near future, year 2030, ammonium nitrate radiative forcing is about ?0.14 W/m² and contributes roughly 10% of the net aerosol and ozone forcing. The present day nitrate and pre-industrial nitrate forcings are ?0.11 and ?0.05 W/m², respectively. The steady increase of nitrate aerosols since industrialization increases its role as a non greenhouse gas forcing agent. However, this impact is still small compared to greenhouse gas forcings, therefore the main role nitrate will play in the future atmosphere is as an air pollutant, with annual mean near surface air concentrations, in the fine particle mode, rising above 3 ?g/m³ in China and therefore reaching pollution levels, like sulphate aerosols.

[1]  M. Jacobson Development and application of a new air pollution modeling system-part I: Gas-phase simulations , 1997 .

[2]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[3]  J. Penner,et al.  Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry , 2007 .

[4]  D. Davis,et al.  The Pacific Exploratory Mission‐West Phase B: February‐March, 1994 , 1997 .

[5]  A. Nenes,et al.  MADM-A New Multicomponent Aerosol Dynamics Model , 2000 .

[6]  Mian Chin,et al.  Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing , 2003 .

[7]  David G. Streets,et al.  Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures , 2006 .

[8]  A. Bouwman,et al.  A global high‐resolution emission inventory for ammonia , 1997 .

[9]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[10]  John H. Seinfeld,et al.  Interactions between tropospheric chemistry and aerosols in a unified general circulation model , 2003 .

[11]  J. Hansen,et al.  Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment , 2005 .

[12]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[13]  S. Pandis,et al.  Prediction of multicomponent inorganic atmospheric aerosol behavior , 1999 .

[14]  J. Seinfeld,et al.  General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system , 2001 .

[15]  Anthony S. Wexler,et al.  A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols , 2005 .

[16]  A. Wexler,et al.  Thermodynamic Model of the System H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15 K , 1998 .

[17]  D. Jacob Heterogeneous chemistry and tropospheric ozone , 2000 .

[18]  Philip B. Russell,et al.  Overview of the Summer 2004 Intercontinental Chemical Transport Experiment–North America (INTEX-A) , 2006 .

[19]  Tami C. Bond,et al.  On the future of carbonaceous aerosol emissions , 2004 .

[20]  John H. Seinfeld,et al.  Role of Climate Change in Global Predictions of Future Tropospheric Ozone and Aerosols , 2006 .

[21]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[22]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[23]  M. Kulmala,et al.  Variations of cloud droplet concentrations and the optical properties of clouds due to changing hygroscopicity: A model study , 1998 .

[24]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 1 Inorganic compounds , 2005 .

[25]  D. Koch,et al.  Global impacts of aerosols from particular source regions and sectors , 2007 .

[26]  Peter Brimblecombe,et al.  Thermodynamic Model of the System H+−NH4+−SO42-−NO3-−H2O at Tropospheric Temperatures , 1998 .

[27]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[28]  M. Jacobson Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II , 1999 .

[29]  S. Bauer,et al.  Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling , 2007 .

[30]  J.G.J. Olivier,et al.  Global emission sources and sinks , 2001 .

[31]  David Rind,et al.  Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years , 2000 .

[32]  John C. Gille,et al.  Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results , 2003 .

[33]  S. Metzger,et al.  Modelling of nitrate and ammonium-containing aerosols in presence of sea salt , 2006 .

[34]  M. Andreae,et al.  The NH4+ – NO3– – Cl– – SO42– – H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids? , 2005 .

[35]  D. Hauglustaine,et al.  Global Modelling of Heterogeneous Chemistry on Mineral Aerosol Surfaces : The Influence on Tropospheric Ozone Chemistry and Comparison to Observations , 2003 .

[36]  J. Seinfeld,et al.  A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols , 1986 .

[37]  M. Chin,et al.  Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model , 1999 .

[38]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium: IV. Thermodynamics of Carbonates , 1995 .

[39]  James M. Hoell,et al.  Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics A, August-September 1996 , 1999 .

[40]  D. Jacob,et al.  Pacific Exploratory Mission in the Tropical Pacific: PEM-Tropics B, March-April 1999 , 2001 .

[41]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model , 1993 .

[42]  A. Goodman,et al.  A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles , 2000 .

[43]  J. Lelieveld,et al.  Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds , 2007 .

[44]  J. Seinfeld,et al.  Atmospheric equilibrium model of sulfate and nitrate aerosols , 1983 .

[45]  Richard G. Derwent,et al.  Multimodel simulations of carbon monoxide: Comparison with observations and projected near‐future changes , 2006 .

[46]  John H. Seinfeld,et al.  Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model , 2004 .

[47]  J. Penner,et al.  NOx from lightning 1. Global distribution based on lightning physics , 1997 .

[48]  J. Lelieveld,et al.  Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds : case study based on MINOS results , 2005 .

[49]  Marco A. Rodríguez,et al.  IMAGES-SCAPE 2 : A modeling study of size-and chemically resolved aerosol thermodynamics in a global chemical transport model , 2004 .

[50]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[51]  Kenneth S. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes , 1992 .

[52]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[53]  J. Seinfeld,et al.  A new inorganic atmospheric aerosol phase equilibrium model (UHAERO) , 2006 .

[54]  J. Seinfeld,et al.  A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes , 2000 .

[55]  G. Schmidt,et al.  Sulfur, sea salt, and radionuclide aerosols in GISS ModelE , 2006 .

[56]  J. Seinfeld,et al.  Atmospheric gas−aerosol equilibrium. II: Analysis of common approximations and activity coefficient calculation methods , 1993 .

[57]  Peter Brimblecombe,et al.  Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes , 1992 .

[58]  D. Koch,et al.  Linking future aerosol radiative forcing to shifts in source activities , 2007 .

[59]  J. Seinfeld,et al.  Atmospheric Gas–Aerosol Equilibrium: III. Thermodynamics of Crustal Elements Ca2+, K+, and Mg2+ , 1995 .

[60]  J. Seinfeld,et al.  Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols , 1987 .

[61]  C. Prigent,et al.  Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model , 2006 .

[62]  S. Bauer,et al.  Nitrate aerosols today and in 2030: importance relative to other aerosol species and tropospheric ozone , 2007 .

[63]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[64]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[65]  J. Seinfeld,et al.  Atmospheric equilibrium model of sulfate and nitrate aerosols—II. Particle size analysis , 1984 .

[66]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 2 - Including organic compounds , 2005 .

[67]  Young-Joon Kim,et al.  An overview of ACE‐Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts , 2003 .

[68]  G. Faluvegi,et al.  Atmospheric Chemistry and Physics , 2003 .

[69]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[70]  D. Hauglustaine,et al.  Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations , 2004 .

[71]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[72]  J. Lelieveld,et al.  Gas/aerosol partitioning 2. Global modeling results , 2002 .

[73]  Marco A. Rodríguez,et al.  IMAGES-SCAPE2: A modeling study of size- and chemically resolved aerosol thermodynamics in a global chemical transport model , 2004 .

[74]  John H. Seinfeld,et al.  Global impacts of gas‐phase chemistry‐aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone , 2005 .

[75]  S. Bauer,et al.  Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model , 2005 .

[76]  T. Vesala,et al.  Changes in cloud properties due to NOx emissions , 1995 .