Four new species of Russula subsection Roseinae from tropical montane forests in western Panama

Species of the genus Russula are key components of ectomycorrhizal ecosystems worldwide. Nevertheless, their diversity in the tropics is still poorly known. This study aims to contribute to the knowledge of the diversity of Russula species classified in subsection Roseinae based on specimens recently collected in tropical montane rainforests in western Panama. A five gene multilocus phylogeny based on the nuclear markers ITS nrDNA, MCM7, RPB1, RPB2 and TEF-1α was constructed to identify the systematic position of 22 collections from Panama. Four new species, Russula cornicolor, Russula cynorhodon, Russula oreomunneae and Russula zephyrovelutipes are formally described and illustrated. None of the four species are sister species and they are more closely related to North American or Asian species. Two of the newly described species were associated with the ectomycorrhizal tree species Oreomunnea mexicana, while the other two species were associated with Quercus species. All four species are so far only known from mountains in western Panama.

[1]  B. Looney,et al.  Systematic revision of the Roseinae clade of Russula, with a focus on eastern North American taxa , 2022, Mycologia.

[2]  C. Manz,et al.  Morphological and genetic diversification of Russula floriformis, sp. nov., along the Isthmus of Panama , 2021, Mycologia.

[3]  C. Manz,et al.  Rehydration of dried mushroom specimens with Aerosol® OT for scanning electron microscopy , 2021, Mycological Progress.

[4]  P. Kirk,et al.  A compendium of generic names of agarics and Agaricales , 2020 .

[5]  C. Ovrebo,et al.  Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities , 2020, bioRxiv.

[6]  B. Looney,et al.  Coalescent-based delimitation and species-tree estimations reveal Appalachian origin and Neogene diversification in Russula subsection Roseinae. , 2020, Molecular phylogenetics and evolution.

[7]  K. Das,et al.  The quest for a globally comprehensible Russula language , 2019, Fungal Diversity.

[8]  G. Mcpherson,et al.  Additions to the flora of Panama, with comments on plant collections and information gaps , 2019, Check List.

[9]  T. Henkel,et al.  Ectomycorrhizal associations in the tropics - biogeography, diversity patterns and ecosystem roles. , 2018, The New phytologist.

[10]  B. Buyck,et al.  Walking the thin line… ten years later: the dilemma of above- versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota) , 2018, Fungal Diversity.

[11]  A. Rinaldi,et al.  The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis. , 2017, The New phytologist.

[12]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[13]  K. Hyde,et al.  A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus , 2016, Persoonia.

[14]  Dyutiparna Chakraborty,et al.  Fungal Biodiversity Profiles 41–50 , 2017, Cryptogamie, Mycologie.

[15]  K. Hyde,et al.  Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications , 2016 .

[16]  B. Looney,et al.  Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi , 2016, Molecular ecology.

[17]  Hernawati,et al.  Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa , 2016, Fungal Diversity.

[18]  I. MacGregor‐Fors,et al.  How Are Oaks Distributed in the Neotropics? A Perspective from Species Turnover, Areas of Endemism, and Climatic Niches , 2015, International Journal of Plant Sciences.

[19]  Benjamin L Turner,et al.  Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest , 2015, Mycorrhiza.

[20]  R. Henrik Nilsson,et al.  Global diversity and geography of soil fungi , 2014, Science.

[21]  K. Hyde,et al.  Epitypification and neotypification: guidelines with appropriate and inappropriate examples , 2014, Fungal Diversity.

[22]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[23]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[24]  J. Geml,et al.  Biodiversity and molecular ecology of Russula and Lactarius in Alaska based on soil and sporocarp DNA sequences , 2013 .

[25]  S. Adamčík,et al.  Type-studies in American Russula (Russulales, Basidio- mycota): in and out subsection Roseinae , 2012 .

[26]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[27]  Ben C. Stöver,et al.  TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses , 2010, BMC Bioinformatics.

[28]  J. Fankhauser,et al.  New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.

[29]  A. Fremier,et al.  Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus species. , 2009, The New phytologist.

[30]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[31]  A. Verbeken,et al.  Lactarius sanguifluus versus Lactarius vinosus — Molecular and morphological analyses , 2003, Mycological Progress.

[32]  K. Nixon Global and Neotropical Distribution and Diversity of Oak (genus Quercus) and Oak Forests , 2006 .

[33]  P. B. Matheny Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). , 2005, Molecular phylogenetics and evolution.

[34]  S. Rehner,et al.  A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs , 2005, Mycologia.

[35]  R. Singer Oak mycorrhiza fungi in Colombia , 1963, Mycopathologia et mycologia applicata.

[36]  B. Buyck,et al.  New and interesting Russula species from Panamá , 2002, Mycologia.

[37]  B. Hall,et al.  Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). , 2002, American journal of botany.

[38]  T Lake,et al.  Walking a thin line , 1999 .

[39]  E. Boa,et al.  Ainsworth and Bisby's Dictionary of the Fungi , 1998 .

[40]  Mauro Sarnari Monografia illustrata del genere Russula in Europa , 1998 .

[41]  B D Hall,et al.  The origin of red algae: implications for plastid evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[43]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[44]  J. Wanscher,et al.  Methuen Handbook of Colour , 1978 .

[45]  G. C. Ainsworth,et al.  Ainsworth and Bisby's Dictionary of the fungi. Sixth edition. , 1971 .

[46]  W. Murrill The Agaricaceae of Tropical North America—III , 1911 .