A particle-filtering approach for on-line fault diagnosis and failure prognosis

This paper introduces an on-line particle-filtering (PF)-based framework for fault diagnosis and failure prognosis in non-linear, non-Gaussian systems. This framework considers the implementation of two autonomous modules. A fault detection and identification (FDI) module uses a hybrid state-space model of the plant and a PF algorithm to estimate the state probability density function (pdf) of the system and calculates the probability of a fault condition in real-time. Once the anomalous condition is detected, the available state pdf estimates are used as initial conditions in prognostic routines. The failure prognostic module, on the other hand, predicts the evolution in time of the fault indicator and computes the pdf of the remaining useful life (RUL) of the faulty subsystem, using a non-linear state-space model (with unknown time-varying parameters) and a PF algorithm that updates the current state estimate. The outcome of the prognosis module provides information about the precision and accuracy of long-term predictions, RUL expectations and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary gear plate are used to validate the proposed approach.

[1]  Visakan Kadirkamanathan,et al.  Particle filtering-based fault detection in non-linear stochastic systems , 2002, Int. J. Syst. Sci..

[2]  John Langford,et al.  Risk Sensitive Particle Filters , 2001, NIPS.

[3]  Sebastian Thrun,et al.  Real-time fault diagnosis [robot fault diagnosis] , 2004, IEEE Robotics & Automation Magazine.

[4]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[5]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[6]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[7]  S. Thrun,et al.  Particle Filters for Rover Fault Diagnosis , 2004 .

[8]  January,et al.  A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes , 2005 .

[9]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[10]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[11]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[12]  Fredrik Gustafsson,et al.  Particle filters for system identification with application to chaos prediction , 2003 .

[13]  N. D. Freitas Rao-Blackwellised particle filtering for fault diagnosis , 2002 .

[14]  S. Thrun,et al.  Tractable Particle Filters for Robot Fault Diagnosis , 2004 .

[15]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[16]  Marcos Eduardo Orchard,et al.  A Particle Filtering-based Framework for On-line Fault Diagnosis and Failure Prognosis , 2007 .

[17]  Bin Zhang,et al.  An integrated approach to helicopter planetary gear fault diagnosis and failure prognosis , 2007, 2007 IEEE Autotestcon.

[18]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[19]  Asok Ray,et al.  Stochastic modeling of fatigue crack dynamics for on-line failure prognostics , 1996, IEEE Trans. Control. Syst. Technol..

[20]  Feng Zhao,et al.  Monitoring and Diagnosis of Hybrid Systems Using Particle Filtering Methods , 2002 .

[21]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[22]  Freda Kemp,et al.  An Introduction to Sequential Monte Carlo Methods , 2003 .

[23]  Christophe Andrieu,et al.  Sequential Monte Carlo Methods for Optimal Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[24]  N. de Freitas Rao-Blackwellised particle filtering for fault diagnosis , 2002, Proceedings, IEEE Aerospace Conference.

[25]  J. Huisman The Netherlands , 1996, The Lancet.

[26]  Visakan Kadirkamanathan,et al.  Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[27]  Frank L. Lewis,et al.  Intelligent Fault Diagnosis and Prognosis for Engineering Systems , 2006 .

[28]  A. Doucet On sequential Monte Carlo methods for Bayesian filtering , 1998 .

[29]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .