SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae

We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism—thermal emission, circumstellar interaction, or 56Ni decay—requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 M☉, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.

[1]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[2]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[3]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[4]  S. Valenti,et al.  Supernova 2002ic: The Collapse of a Stripped-Envelope, Massive Star in a Dense Medium? , 2006, astro-ph/0611125.

[5]  R. Kotak,et al.  Luminous blue variables as the progenitors of supernovae with quasi-periodic radio modulations , 2006, astro-ph/0610095.

[6]  G. Gräfener,et al.  The Galactic WN stars. Spectral analyses with line-blanketed model atmospheres versus stellar evolut , 2006, astro-ph/0608078.

[7]  S. Owocki,et al.  On the Role of Continuum-driven Eruptions in the Evolution of Very Massive Stars and Population III Stars , 2006, astro-ph/0606174.

[8]  G. Smadja,et al.  Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope , 2006, astro-ph/0606499.

[9]  R. Petre,et al.  A Chandra ACIS Observation of the X-Ray-luminous SN 1988Z , 2006, astro-ph/0604106.

[10]  N. Smith,et al.  The Structure of the Homunculus. I. Shape and Latitude Dependence from H2 and [Fe II] Velocity Maps of η Carinae , 2006, astro-ph/0602464.

[11]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[12]  R. Chevalier,et al.  Late Emission from the Type Ib/c SN 2001em: Overtaking the Hydrogen Envelope , 2005, astro-ph/0510362.

[13]  K. Stanek,et al.  The Fate of the Most Massive Stars , 2005 .

[14]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[15]  D. Massa,et al.  The Discordance of Mass-Loss Estimates for Galactic O-Type Stars , 2005, astro-ph/0510252.

[16]  S. Woosley,et al.  The Detectability of Pair-Production Supernovae at z ≲ 6 , 2005, astro-ph/0507182.

[17]  D. Figer An upper limit to the masses of stars , 2005, Nature.

[18]  D. Hillier,et al.  Lower mass loss rates in O-type stars: Spectral signatures of dense clumps in the wind of two Galactic O4 stars , 2004, astro-ph/0412346.

[19]  J. Vink,et al.  The Missing Luminous Blue Variables and the Bistability Jump , 2004, astro-ph/0407202.

[20]  Berkeley,et al.  The Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope , 2004, astro-ph/0405369.

[21]  J. Morse,et al.  Nitrogen and Oxygen Abundance Variations in the Outer Ejecta of η Carinae: Evidence for Recent Chemical Enrichment , 2004, astro-ph/0402476.

[22]  P. Mazzali,et al.  Subaru Spectroscopy of the Interacting Type Ia Supernova SN 2002ic: Evidence of a Hydrogen-rich, Asymmetric Circumstellar Medium , 2003, astro-ph/0311590.

[23]  M. Livio,et al.  Have the Elusive Progenitors of Type Ia Supernovae Been Discovered? , 2003, astro-ph/0308018.

[24]  R. Foley,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[25]  N. Chugai,et al.  A massive circumstellar envelope around the type-IIn supernova SN 1995G , 2003, astro-ph/0306330.

[26]  S. E. Persson,et al.  An asymptotic-giant-branch star in the progenitor system of a type Ia supernova , 2003, Nature.

[27]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[28]  Robert D. Gehrz,et al.  Mass and Kinetic Energy of the Homunculus Nebula around η Carinae , 2003 .

[29]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[30]  E. Rykoff,et al.  The ROTSE‐III Robotic Telescope System , 2002, astro-ph/0210238.

[31]  Christopher L. Williams,et al.  Radio Emission from SN 1988Z and Very Massive Star Evolution , 2002, astro-ph/0208190.

[32]  R. Kudritzki Line-driven Winds, Ionizing Fluxes, and Ultraviolet Spectra of Hot Stars at Extremely Low Metallicity. I. Very Massive O Stars , 2002, astro-ph/0205210.

[33]  A. Filippenko,et al.  Possible Recovery of SN 1961V in Hubble Space Telescope Archival Images , 2002, astro-ph/0203508.

[34]  A. Filippenko,et al.  A Hubble Space Telescope Snapshot Survey of Nearby Supernovae , 2002, astro-ph/0201228.

[35]  R. Terlevich,et al.  The circumstellar material around SN IIn 1997eg: another detection of a very narrow P Cygni profile , 2001, astro-ph/0112067.

[36]  W. Meikle,et al.  The origin of the high velocity circumstellar gas around SN 1998S , 2001, astro-ph/0111269.

[37]  J. Sollerman,et al.  Optical and Ultraviolet Spectroscopy of SN 1995N: Evidence for Strong Circumstellar Interaction , 2001, astro-ph/0108149.

[38]  S. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2001, astro-ph/0107037.

[39]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[40]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[41]  Aneta Siemiginowska,et al.  Sherpa: a mission-independent data analysis application , 2001, SPIE Optics + Photonics.

[42]  Caltech,et al.  X-Ray, Optical, and Radio Observations of the Type II Supernovae 1999em and 1998S , 2001, astro-ph/0103196.

[43]  M. Irwin,et al.  Optical and infrared spectroscopy of the type IIn SN 1998S: days 3–127 , 2000, astro-ph/0011340.

[44]  S. Woosley,et al.  On the Stability of Very Massive Primordial Stars , 2000, astro-ph/0009410.

[45]  A. Castro-Carrizo,et al.  Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae , 2001 .

[46]  Caltech,et al.  The X‐ray spectrum and light curve of Supernova 1995N , 2000, astro-ph/0008410.

[47]  Bruce A. Macintosh,et al.  IRCAL: the infrared camera for adaptive optics at Lick Observatory , 2000, Astronomical Telescopes and Instrumentation.

[48]  L. Ho,et al.  Detailed Analysis of Early to Late-Time Spectra of Supernova 1993J , 2000, astro-ph/0006264.

[49]  T. Matheson,et al.  Submitted to The Astrophysical Journal Evidence for Asphericity in the Type IIn Supernova 1998S , 1999 .

[50]  M. Bessell Spectrophotometry: Revised Standards and Techniques , 1999 .

[51]  ApJ, in press , 1999 .

[52]  R. Terlevich,et al.  The circumstellar medium of the peculiar supernova SN1997ab , 1998, astro-ph/9809208.

[53]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[54]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[55]  J. Sollerman,et al.  A Very Low Mass of 56Ni in the Ejecta of SN 1994W , 1997, astro-ph/9709061.

[56]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[57]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[58]  Donald T. Gavel,et al.  Image improvement from a sodium-layer laser guide star adaptive optics system , 1997 .

[59]  Chien Y. Peng,et al.  UBVRI Photometry of the Type IC SN 1994I in M51 , 1996 .

[60]  L. Ho,et al.  Was Fritz Zwicky's "Type V" SN 1961V a Genuine Supernova? , 1995 .

[61]  R. Chevalier,et al.  Circumstellar Interaction in SN 1993J , 1994, astro-ph/9406054.

[62]  N. Panagia,et al.  SN 1988Z : the most distant radio supernova , 1993 .

[63]  M. Turatto,et al.  The Type II supernova 1988Z in MCG + 03-28-022: increasing evidence of interaction of supernova ejecta with a circumstellar wind , 1993 .

[64]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[65]  R. Stathakis,et al.  What was supernova 1988Z , 1991 .

[66]  C. Garmany,et al.  The H-R diagram of the Large Magellanic Cloud and implications for stellar evolution , 1990 .

[67]  N. Suntzeff,et al.  SN 1987A IN THE LARGE MAGELLANIC CLOUD. IV. PHOTOMETRY FROM THE SPECTROPHOTOMETRY , 1990 .

[68]  E. Schlegel A new subclass of Type II supernovae , 1990 .

[69]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[70]  A. Filippenko,et al.  SN 1961V - An extragalactic ETA Carinae analog , 1989 .

[71]  G. Knapp,et al.  Mass Loss from Evolved Stars. VII. OH Maser Shell Radii and Mass-Loss Rates for OH/IR Stars , 1987 .

[72]  Peter S. Conti,et al.  Wolf-Rayet Stars , 1987 .

[73]  J. R. Bond,et al.  The Evolution and fate of Very Massive Objects , 1984 .

[74]  J. C. Wheeler,et al.  Models for Type I supernovae - Partially incinerated white dwarfs , 1984 .

[75]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[76]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[77]  R. Humphreys,et al.  Studies of luminous stars in nearby galaxies. III. Comments on the evolution of the most massive stars in the Milky Way and the large magellanic cloud , 1979 .

[78]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[79]  G. Fraley Supernovae explosions induced by pair-production instability , 1968 .

[80]  Z. Barkat,et al.  DYNAMICS OF SUPERNOVA EXPLOSION RESULTING FROM PAIR FORMATION. , 1967 .