Siesta: Recent developments and applications.

A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

[1]  Antti-Pekka Jauho,et al.  Inelastic transport theory from first principles: Methodology and application to nanoscale devices , 2006, cond-mat/0611562.

[2]  Fabiano Corsetti,et al.  Room temperature compressibility and diffusivity of liquid water from first principles. , 2013, The Journal of chemical physics.

[3]  Annabella Selloni,et al.  Order-N implementation of exact exchange in extended insulating systems , 2008, 0812.1322.

[4]  Ivano Tavernelli,et al.  Time-dependent density functional theory molecular dynamics simulation of doubly charged uracil in gas phase , 2014 .

[5]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[6]  Daniel Sánchez-Portal,et al.  Optical response of silver clusters and their hollow shells from linear-response TDDFT , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  A. V. Postnikov,et al.  Calculated vibration spectrum of monoclinic Cu2SnSe3 in comparison with kesterite-type Cu2ZnSnSe4 , 2013 .

[8]  Antti-Pekka Jauho,et al.  All-graphene edge contacts: Electrical resistance of graphene T-junctions , 2016, 1601.07708.

[9]  Mads Brandbyge,et al.  Multi-scale approach to first-principles electron transport beyond 100 nm. , 2018, Nanoscale.

[10]  A. Gómez,et al.  Ab initio DFT Calculations for Materials in Nuclear Research , 2016, CARLA.

[11]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[12]  Alberto García,et al.  An efficient implementation of a QM–MM method in SIESTA , 2011 .

[13]  A Marek,et al.  The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  Christian Joachim,et al.  Electronic transport in planar atomic-scale structures measured by two-probe scanning tunneling spectroscopy , 2019, Nature Communications.

[15]  P. Ordejón,et al.  Calculation of core level shifts within DFT using pseudopotentials and localized basis sets , 2012 .

[16]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[17]  M. Alcamí,et al.  Theoretical investigation of the ultrafast dissociation of ionised biomolecules immersed in water: direct and indirect effects. , 2010, Mutation research.

[18]  Gross,et al.  Excitation energies from time-dependent density-functional theory. , 1996, Physical review letters.

[19]  Chao Yang,et al.  SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  David D. O'Regan,et al.  Quantum mechanics in an evolving Hilbert space , 2016, 1608.05300.

[21]  Kwang Soo Kim,et al.  Prediction of very large values of magnetoresistance in a graphene nanoribbon device. , 2008, Nature nanotechnology.

[22]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[23]  Emilio Artacho,et al.  Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles. , 2012, The journal of physical chemistry. A.

[24]  William F. Schneider,et al.  Heterogeneous Catalysis at Nanoscale for Energy Applications , 2014 .

[25]  Lukas Krämer,et al.  Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations , 2011, Parallel Comput..

[26]  Fabiano Corsetti,et al.  Performance Analysis of Electronic Structure Codes on HPC Systems: A Case Study of SIESTA , 2014, PloS one.

[27]  Emilio Artacho,et al.  Electronic stopping power in gold: the role of d electrons and the H/He anomaly. , 2012, Physical review letters.

[28]  A. I. Lichtenstein,et al.  Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations , 2007, 0710.1971.

[29]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[30]  R. J. Powell,et al.  Optical Properties of NiO and CoO , 1970 .

[31]  R. Ramesh Observation of Polar Vortices in Oxide Superlattices , 2016, Microscopy and Microanalysis.

[32]  Zhenyu Li,et al.  Implementation of screened hybrid density functional for periodic systems with numerical atomic orbitals: basis function fitting and integral screening. , 2011, The Journal of chemical physics.

[33]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[34]  Chao Yang,et al.  Electronic Structure of Large-Scale Graphene Nanoflakes , 2014, 1409.1211.

[35]  Ionel Bogdan Guster A bird’s-eye view of charge and spin density wave from first principles calculations , 2019 .

[36]  S. Valenzuela,et al.  Bottom-up synthesis of multifunctional nanoporous graphene , 2018, Science.

[37]  Ursula Rothlisberger,et al.  Molecular dynamics in electronically excited states using time-dependent density functional theory , 2005 .

[38]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[39]  Sergei Manzhos,et al.  Comparative density functional theory and density functional tight binding study of arginine and arginine-rich cell penetrating peptide TAT adsorption on anatase TiO2. , 2016, Physical chemistry chemical physics : PCCP.

[40]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[41]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[42]  Reinhold Schneider,et al.  Daubechies wavelets as a basis set for density functional pseudopotential calculations. , 2008, The Journal of chemical physics.

[43]  Chao Yang,et al.  Room-temperature magnetism and tunable energy gaps in edge-passivated zigzag graphene quantum dots , 2019, npj 2D Materials and Applications.

[44]  S. Louie,et al.  Electronic transport in polycrystalline graphene. , 2010, Nature materials.

[45]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[46]  Hui-Tian Wang,et al.  Variable cell nudged elastic band method for studying solid-solid structural phase transitions , 2013, Comput. Phys. Commun..

[47]  Mathias Jacquelin,et al.  ELSI: A unified software interface for Kohn-Sham electronic structure solvers , 2017, Comput. Phys. Commun..

[48]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[49]  A. Arnau,et al.  Exploring large O 1s and N 1s core level shifts due to intermolecular hydrogen bond formation in organic molecules , 2013 .

[50]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[51]  Alberto García,et al.  The psml format and library for norm-conserving pseudopotential data curation and interoperability , 2017, Comput. Phys. Commun..

[52]  Richard M. Martin,et al.  Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals , 2002 .

[53]  Nick Papior,et al.  A tunable electronic beam splitter realized with crossed graphene nanoribbons , 2016, 1611.03337.

[54]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[55]  Fabiano Corsetti,et al.  Electronic stopping power in a narrow band gap semiconductor from first principles , 2014, 1410.6642.

[56]  Emilio Artacho,et al.  Density, structure, and dynamics of water: the effect of van der Waals interactions. , 2010, The Journal of chemical physics.

[57]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[58]  Felix Yndurain,et al.  Band unfolding made simple , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[59]  Kurt Stokbro,et al.  Improved initial guess for minimum energy path calculations. , 2014, The Journal of chemical physics.

[60]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[61]  J. Junquera,et al.  Ab initio local vibrational modes of light impurities in silicon , 2001, cond-mat/0109306.

[62]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[63]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[64]  Javier Junquera,et al.  Second-principles method for materials simulations including electron and lattice degrees of freedom , 2015, 1511.07675.

[65]  Carsten A. Ullrich,et al.  The Particle-Hole Map: A Computational Tool To Visualize Electronic Excitations. , 2015, Journal of chemical theory and computation.

[66]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[67]  Roberto Robles,et al.  Coexistence of Elastic Modulations in the Charge Density Wave State of 2 H-NbSe2. , 2019, Nano letters.

[68]  M. Barbry Plasmons in nanoparticles: atomistic Ab Initio theory for large systems , 2018 .

[69]  Tao Liu,et al.  Prediction of equilibrium isotopic fractionation of the gypsum/bassanite/water system using first-principles calculations , 2019, Geochimica et Cosmochimica Acta.

[70]  Alfio Lazzaro,et al.  DBCSR: A Blocked Sparse Tensor Algebra Library , 2019, PARCO.

[71]  J. Cerdá,et al.  Fully relativistic pseudopotential formalism under an atomic orbital basis: spin–orbit splittings and magnetic anisotropies , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[72]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[73]  Stefano Sanvito,et al.  On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods , 2006, cond-mat/0601093.

[74]  Luciano Colombo,et al.  Thermal and transport properties of pristine single-layer hexagonal boron nitride : a first principles investigation , 2017 .

[75]  Christopher T. Nelson,et al.  Spatially resolved steady-state negative capacitance , 2019, Nature.

[76]  Michael A. Scarpulla,et al.  Model of native point defect equilibrium in Cu2ZnSnS4 and application to one-zone annealing , 2013 .

[77]  Oleg V. Yazyev,et al.  Defect-induced magnetism in graphene , 2007 .

[78]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[79]  Mads Brandbyge,et al.  Removing all periodic boundary conditions: Efficient nonequilibrium Green's function calculations , 2019, Physical Review B.

[80]  Alfredo A. Correa,et al.  Calculating electronic stopping power in materials from first principles , 2018, Computational Materials Science.

[81]  G. Henkelman,et al.  Optimization methods for finding minimum energy paths. , 2008, The Journal of chemical physics.

[82]  Nelson,et al.  First-principles calculations of spin-orbit splittings in solids using nonlocal separable pseudopotentials. , 1993, Physical review. B, Condensed matter.

[83]  Jack J. Dongarra,et al.  A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..

[84]  Emilio Artacho,et al.  Electronic stopping power in LiF from first principles. , 2007, Physical review letters.

[85]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[86]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[87]  Alberto García,et al.  Improvements on non-equilibrium and transport Green function techniques: The next-generation transiesta , 2016, Comput. Phys. Commun..

[88]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[89]  J. Junquera,et al.  Systematic generation of finite-range atomic basis sets for linear-scaling calculations , 2002 .

[90]  R. Ramesh,et al.  Observation of room-temperature polar skyrmions , 2019, Nature.

[91]  Jorge Íñiguez,et al.  Theoretical investigation of lattice thermal conductivity and electrophononic effects in SrTiO3 , 2019, Physical Review Materials.

[92]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[93]  Vijay Singh,et al.  DMFTwDFT: An open-source code combining Dynamical Mean Field Theory with various density functional theory packages , 2020, Comput. Phys. Commun..

[94]  P. Ordejón,et al.  A DFT-Based QM-MM Approach Designed for the Treatment of Large Molecular Systems: Application to Chorismate Mutase , 2003 .

[95]  Christopher T. Nelson,et al.  Emergent chirality in the electric polarization texture of titanate superlattices , 2018, Proceedings of the National Academy of Sciences.

[96]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[97]  Fabrizio Cleri,et al.  Thermal conductivity from approach-to-equilibrium molecular dynamics , 2013 .

[98]  Otto F. Sankey,et al.  Time-Dependent Simulation of Conduction through a Molecule , 2001 .

[99]  Nicola Marzari,et al.  Wannier90 as a community code: new features and applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[100]  Soler,et al.  Self-consistent order-N density-functional calculations for very large systems. , 1996, Physical review. B, Condensed matter.

[101]  Martin Baumgarten,et al.  Magnetic edge states and coherent manipulation of graphene nanoribbons , 2018, Nature.

[102]  Aris Marcolongo,et al.  Microscopic theory and quantum simulation of atomic heat transport , 2015, Nature Physics.

[103]  D. Langreth,et al.  Energetics and dynamics of H(2) adsorbed in a nanoporous material at low temperature. , 2009, Physical review letters.

[104]  Chao Yang,et al.  Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes. , 2014, The Journal of chemical physics.

[105]  Luigi Genovese,et al.  Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library. , 2017, Journal of chemical theory and computation.

[106]  D. Wales,et al.  A doubly nudged elastic band method for finding transition states. , 2004, The Journal of chemical physics.

[107]  Martin Head-Gordon,et al.  A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .

[108]  Takahito Nakajima,et al.  Massively parallel sparse matrix function calculations with NTPoly , 2017, Comput. Phys. Commun..

[109]  Chao Yang,et al.  Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[110]  Emilio Artacho,et al.  Anisotropy of electronic stopping power in graphite , 2019, Physical Review B.

[111]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[112]  Seungchul Kim,et al.  Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. , 2007, Physical review letters.

[113]  Goedecker,et al.  Integral representation of the Fermi distribution and its applications in electronic-structure calculations. , 1993, Physical review. B, Condensed matter.

[114]  James Demmel,et al.  ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[115]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[116]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[117]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[118]  Philippe Ghosez,et al.  First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[119]  Mortazavi Amiri,et al.  Relations entre motifs structuraux et dynamique de réseau dans les cristaux mixtes Cu-Zn-Sn-Se : études premiers principes , 2013 .

[120]  Javier Aizpurua,et al.  Optical response of metallic nanojunctions driven by single atom motion , 2015 .

[121]  Alfredo Caro,et al.  Nonadiabatic forces in ion-solid interactions: the initial stages of radiation damage. , 2012, Physical review letters.

[122]  B. Tourancheau,et al.  Basic Linear Algebra Comrnunication Subprograms , 1991, The Sixth Distributed Memory Computing Conference, 1991. Proceedings.

[123]  Daniel Sánchez-Portal,et al.  PySCF-NAO: An efficient and flexible implementation of linear response time-dependent density functional theory with numerical atomic orbitals , 2019, Comput. Phys. Commun..

[124]  Tchavdar N. Todorov,et al.  Time-dependent tight binding , 2001 .

[125]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[126]  Zhen Zhu,et al.  Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. , 2014, Physical review letters.

[127]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[128]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[129]  J. Íñiguez,et al.  Electric control of the heat flux through electrophononic effects , 2018, 1805.08213.

[130]  Olivier Coulaud,et al.  Extensions of the siesta dft code for simulation of molecules , 2013, ArXiv.

[131]  Javier Junquera,et al.  Structural and energetic properties of domains in PbTiO 3/ SrTiO 3 superlattices from first principles , 2012 .

[132]  Guillermo M. Muñoz Caro,et al.  Introduction to Spectroscopy and Astronomical Observations , 2018 .

[133]  José M. Gómez-Rodríguez,et al.  Atomic-scale control of graphene magnetism by using hydrogen atoms , 2016, Science.

[134]  Andreas Marek,et al.  Optimizations of the Eigensolvers in the ELPA Library , 2018, Parallel Comput..

[135]  S. H. Wemple Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3 , 1970 .

[136]  Francesc Illas,et al.  Understanding the reactivity of metallic nanoparticles: beyond the extended surface model for catalysis. , 2014, Chemical Society reviews.

[137]  Gabriel Bester,et al.  Large-scale atomic effective pseudopotential program including an efficient spin-orbit coupling treatment in real space , 2015 .

[138]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[139]  Masoud Darvish Ganji,et al.  Amino acids interacting with defected carbon nanotubes: ab initio calculations , 2016 .

[140]  N. Hine,et al.  Applications of large-scale density functional theory in biology , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[141]  Mathias Jacquelin,et al.  ELSI - An open infrastructure for electronic structure solvers , 2019, Comput. Phys. Commun..

[142]  A. Ivanov,et al.  Lattice dynamics of the model percolation-type (Zn,Be)Se alloy: Inelastic neutron scattering, ab initio study, and shell-model calculations , 2014 .

[143]  Giulia Galli,et al.  Linear scaling methods for electronic structure calculations and quantum molecular dynamics simulations , 1996 .

[144]  Steven G. Louie,et al.  Topological defects in graphene: Dislocations and grain boundaries , 2010, 1004.2031.

[145]  Enric Canadell,et al.  Evidence for the weak coupling scenario of the Peierls transition in the blue bronze , 2019, Physical Review Materials.

[146]  Toshiyuki Imamura,et al.  Development of a High-Performance Eigensolver on a Peta-Scale Next-Generation Supercomputer System , 2011 .

[147]  Andreas Hermann,et al.  Chemical Bonding at High Pressure , 2017 .

[148]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[149]  Fabiano Corsetti,et al.  The orbital minimization method for electronic structure calculations with finite-range atomic basis sets , 2013, Comput. Phys. Commun..

[150]  Jack J. Dongarra,et al.  Accelerating Numerical Dense Linear Algebra Calculations with GPUs , 2014, Numerical Computations with GPUs.

[151]  R Vuilleumier,et al.  Ultrafast nonadiabatic fragmentation dynamics of doubly charged uracil in a gas phase. , 2011, Physical review letters.

[152]  A Gloter,et al.  Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. , 2012, Nano letters.

[153]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[154]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[155]  Jorge Íñiguez,et al.  Anisotropy-driven thermal conductivity switching and thermal hysteresis in a ferroelectric , 2019, Applied Physics Letters.

[156]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[157]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[158]  Agustín Camón,et al.  Charge Delocalization, Oxidation States, and Silver Mobility in the Mixed Silver-Copper Oxide AgCuO2 ¤. , 2019, Inorganic chemistry.

[159]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[160]  Stefano de Gironcoli,et al.  Hubbard‐corrected DFT energy functionals: The LDA+U description of correlated systems , 2013, 1309.3355.

[161]  Emilio Artacho,et al.  The SIESTA method; developments and applicability , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[162]  A. Cheetham,et al.  Magnetic ordering and exchange effects in the antiferromagnetic solid solutionsMnxNi1−xO , 1983 .

[163]  Javier Aizpurua,et al.  Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics , 2016 .

[164]  Jun Dai,et al.  Edge-Modified Phosphorene Nanoflake Heterojunctions as Highly Efficient Solar Cells. , 2016, Nano letters.