Ergodic Control in L∞

The infinite horizon discounted L∞ problem is studied as the discount factor goes to zero. It is related to the limit of the finite horizon problem as the horizon becomes infinite. The deterministic problem with and without a running cost is considered.

[1]  Pontryagin's Maximum Principle and a Minimax Problem. , 1971 .

[2]  S. C. Di Marco,et al.  Relaxation of Minimax Optimal Control Problems with Infinite Horizon , 1999 .

[3]  Guy Barles,et al.  Optimal Control on the $L^\infty$ Norm of a Diffusion Process , 1994 .

[4]  P. Lyons Neumann Type Boundary Conditions for Hamilton-Jacobi Equations. , 1985 .

[5]  R. González,et al.  A Minimax Optimal Control Problem with Infinite Horizon , 1996 .

[6]  E. Barron The Bellman equation for control of the running max of a diffusion and applications to look-back options , 1993 .

[7]  Dynamical programming techniques in minimax optimal control problems , 1997 .

[8]  J. Warga Optimal control of differential and functional equations , 1972 .

[9]  Relaxation of Constrained Control Problems , 1996 .

[10]  M. Arisawa Ergodic problem for the Hamilton-Jacobi-Bellman equation. I. Existence of the ergodic attractor , 1997 .

[11]  E. Barron The Pontry-Agin maximum principle for minimax problems of optimal control , 1990 .

[12]  M. Arisawa Ergodic problem for the Hamilton-Jacobi-Bellman equation. II , 1998 .

[13]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[14]  E. N. Barron,et al.  Relaxed Minimax Control , 1995 .

[15]  E. Barron,et al.  The Bellman equation for minimizing the maximum cost , 1989 .

[16]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[17]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[18]  P. Lions,et al.  ON ERGODIC STOCHASTIC CONTROL , 1998 .

[19]  J. Menaldi,et al.  Asymptotic behavior of the first order obstacle problem , 1988 .