A comparison of nonlinear observers for output feedback model-based control of seeded batch crystallization processes

This paper presents a comparative analysis of various nonlinear estimation techniques when applied for output feedback model-based control of batch crystallization processes. Several nonlinear observers, namely an extended Luenberger observer, an extended Kalman filter, an unscented Kalman filter, an ensemble Kalman filer and a moving horizon estimator are used for closed-loop control of a semi-industrial fed-batch crystallizer. The performance of the nonlinear observers is evaluated in terms of their closed-loop behavior as well as their ability to cope with model imperfections and process uncertainties such as measurement errors and uncertain initial conditions. The simulation results suggest that the extended Kalman filter and the unscented Kalman filter provide accurate state estimates that ensure adequate fulfillment of the control objective. The results also confirm that adopting a time-varying process noise covariance matrix further enhances the estimation accuracy of the latter observers at the expense of a slight increase in their computational burden. This tuning method is particularly suited for batch processes as the state variables often vary significantly along the batch run. It is observed that model imperfections and process uncertainties are largely detrimental to the accuracy of state estimates. The degradation in the closed-loop control performance arisen from inadequate state estimation is effectively suppressed by the inclusion of a disturbance model into the observers.

[1]  Orest Iftime,et al.  Proceedings of the 16th IFAC World congress , 2006 .

[2]  Sohrab Rohani,et al.  On-line optimal control of a seeded batch cooling crystallizer , 2003 .

[3]  Zoltan K. Nagy,et al.  Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor , 2007 .

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  Giorgio Battistelli,et al.  Unfalsified Virtual Reference Adaptive Switching Control of Plants with Persistent Disturbances , 2008 .

[6]  D. Bernstein,et al.  What is the ensemble Kalman filter and how well does it work? , 2006, 2006 American Control Conference.

[7]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[8]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[9]  Jay H. Lee,et al.  Extended Kalman Filter Based Nonlinear Model Predictive Control , 1993, 1993 American Control Conference.

[10]  Juergen Hahn,et al.  Process monitoring and parameter estimation via unscented Kalman filtering , 2009 .

[11]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[12]  Prashant Mhaskar,et al.  Predictive control of crystal size distribution in protein crystallization , 2005, Nanotechnology.

[13]  Philippe Bogaerts,et al.  A hybrid asymptotic-Kalman observer for bioprocesses , 1999 .

[14]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .

[15]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[16]  Ernst Dieter Gilles,et al.  State estimation in batch crystallization using reduced population models , 2008 .

[17]  Zoltan K. Nagy,et al.  Real‐time control of a semi‐industrial fed‐batch evaporative crystallizer using different direct optimization strategies , 2011 .

[18]  Hassan Hammouri,et al.  Nonlinear observer of crystal‐size distribution during batch crystallization , 2006 .

[19]  J. Landlust,et al.  AN INDUSTRIAL MODEL PREDICTIVE CONTROL ARCHITECTURE FOR BATCH CRYSTALLISATION , 2008 .

[20]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[21]  Paulo Afonso,et al.  Unscented Kalman Filtering of a Simulated pH System , 2004 .

[22]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[23]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[24]  Jorge A. Solsona,et al.  State estimation in batch processes using a nonlinear observer , 2006, Math. Comput. Model..

[25]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[26]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[27]  A. N. Kalbasenka,et al.  Model-Based Control of Industrial Batch Crystallizers : Experiments on Enhanced Controllability by Seeding Actuation , 2009 .

[28]  Wolfgang Marquardt,et al.  Nonlinear Model Predictive Control of Batch Processes , 1995 .

[29]  Wei Xie,et al.  Extended kalman filter based nonlinear geometric control of a seeded batch cooling crystallizer , 2002 .

[30]  Jean-Michel Brankart,et al.  A Reduced-Order Kalman Filter for Data Assimilation in Physical Oceanography , 2007, SIAM Rev..

[31]  E. J. de Jong,et al.  Secondary nucleation kinetcs of ammonium sulfate in a CMSMPR crystallizer , 1990 .

[32]  C. V. Rao,et al.  Constrained process monitoring: Moving‐horizon approach , 2002 .

[33]  Michel Verhaegen,et al.  Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) , 1999 .

[34]  James B. Rawlings,et al.  Efficient moving horizon estimation and nonlinear model predictive control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[35]  Richard D. Braatz,et al.  Nonlinear model predictive control for the polymorphic transformation of L‐glutamic acid crystals , 2009 .

[36]  D. Wilson,et al.  Experiences implementing the extended Kalman filter on an industrial batch reactor , 1998 .

[37]  Silvina I. Biagiola,et al.  Application of state estimation based NMPC to an unstable nonlinear process , 2004 .

[38]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[39]  Andreas Bück,et al.  Two state estimators for the barium sulfate precipitation in a semi-batch reactor , 2009 .

[40]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[41]  Zoltan K. Nagy,et al.  Model based robust control approach for batch crystallization product design , 2009, Comput. Chem. Eng..

[42]  Zoltan K. Nagy,et al.  Dynamic modelling and nonlinear model predictive control of a Fluid Catalytic Cracking Unit , 2009, Comput. Chem. Eng..

[43]  Wei-bing Gao,et al.  On exponential observers for nonlinear systems , 1988 .

[44]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[45]  H. Kramer,et al.  Application of Seeding as a Process Actuator in a Model Predictive Control Framework for Fed‐Batch Crystallization of Ammonium Sulphate , 2007 .

[46]  H. Kramer,et al.  A Comparative Study of ATR-FTIR and FT-NIR Spectroscopy for In-Situ Concentration Monitoring during Batch Cooling Crystallization Processes , 2010 .

[47]  Elaine Martin,et al.  Particle filters for state and parameter estimation in batch processes , 2005 .

[48]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[49]  Sachin C. Patwardhan,et al.  From data to nonlinear predictive control. 2. Improving regulatory performance using identified observers , 2006 .

[50]  Paul M.J. Van den Hof,et al.  Real-time Dynamic Optimization of Batch Crystallization Processes , 2008 .

[51]  Denis Dochain,et al.  Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters , 2000 .

[52]  Richard D. Braatz,et al.  Advanced control of crystallization processes , 2002, Annu. Rev. Control..

[53]  Eugénio C. Ferreira,et al.  Stability, dynamics of convergence and tuning of observer-based kinetics estimators , 2002 .

[54]  A. Germani,et al.  A Luenberger-like observer for nonlinear systems , 1993 .

[55]  Zoltan K. Nagy,et al.  Model based control of a liquid swelling constrained batch reactor subject to recipe uncertainties , 2009 .

[56]  Xiaogang Wang,et al.  Comparison of Unscented Kalman Filters , 2007, 2007 International Conference on Mechatronics and Automation.

[57]  P.M.J. Van den Hof,et al.  A model-based control framework for industrial batch crystallization processes , 2010 .

[58]  Jean-Luc Gouzé,et al.  A Bounded Error Observer for a Class of Bioreactor Models , 2001 .

[59]  Tor Steinar Schei,et al.  ON-LINE ESTIMATION FOR PROCESS CONTROL AND OPTIMIZATION APPLICATIONS , 2008 .

[60]  Denis Dochain,et al.  State and parameter estimation in chemical and biochemical processes: a tutorial , 2003 .

[61]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[62]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[63]  Andrei Romanenko,et al.  The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study , 2004, Comput. Chem. Eng..

[64]  R. M. Barros,et al.  Decreases in molecularity promote conversion when reactions are catalyzed by enzymes immobilized in slab-shaped beads , 1999 .

[65]  Philippe Bogaerts,et al.  Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation , 2006 .

[66]  Masoud Soroush State and parameter estimations and their applications in process control , 1998 .

[67]  P.M.J. Van den Hof,et al.  Nonlinear model predictive control with moving horizon state and disturbance estimation - With application to MSW combustion , 2005 .

[68]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[69]  S.L. Shah,et al.  Constrained state estimation using the ensemble Kalman filter , 2008, 2008 American Control Conference.

[70]  Paul M.J. Van den Hof,et al.  Model-based control of multiphase flow in subsurface oil reservoirs , 2008 .

[71]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[72]  Linda R. Petzold,et al.  Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems , 1994, SIAM J. Sci. Comput..

[73]  H. Kramer,et al.  A Comparative Study of Various Size Distribution , 2002 .

[74]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[75]  Jay H. Lee,et al.  Integrated run-to-run and on-line model-based control of particle size distribution for a semi-batch precipitation reactor , 2002 .

[76]  Francis J. Doyle,et al.  Use of multiple models and qualitative knowledge for on-line moving horizon disturbance estimation and fault diagnosis , 2002 .

[77]  Jaleel Valappil,et al.  Systematic estimation of state noise statistics for extended Kalman filters , 2000 .

[78]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[79]  Geir Evensen,et al.  Advanced Data Assimilation for Strongly Nonlinear Dynamics , 1997 .

[80]  Bjarne A. Foss,et al.  Applying the unscented Kalman filter for nonlinear state estimation , 2008 .

[81]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[82]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .