Distributed vorticity model for vortex molecule dynamics

We analyze the effect of a hard wall trapping potential on the dynamics of a vortex molecule in a two-component Bose-Einstein condensate with linear coherent coupling. A vortex molecule consists of a vortex of the same charge in each component condensate connected by a domain wall of the relative phase. In a previous paper Ref.[Phys. RevA. 106,043319(2022)] we described the interaction of a vortex molecule with the boundary using the method of images by separately treating each component vortex as a point vortex, in addition to a Magnus force effect from the surface tension of the domain wall. Here we extend the model by considering a continuous distribution of image vorticity reflecting the effect of the domain wall on the vortex molecule phase structure. In the case of a precessing centered vortex molecule in an isotropic trap, distributing the image vorticity weakens its contribution to the precession frequency. We test the model predictions against numerical simulations of the coupled Gross-Pitaevskii equations in a two-dimensional circular disc and find support for the improved model.

[1]  Michikazu Kobayashi,et al.  Proximity effects of vortices in neutron 3P2 superfluids in neutron stars: Vortex core transitions and covalent bonding of vortex molecules , 2022, Physical Review C.

[2]  J. Laurie,et al.  Hamiltonian derivation of the point vortex model from the two-dimensional nonlinear Schrödinger equation. , 2022, Physical review. E.

[3]  J. Brand,et al.  Rotational pendulum dynamics of a vortex molecule in a channel geometry , 2022, Physical Review A.

[4]  A. Fetter,et al.  Superfluid vortex dynamics on an ellipsoid and other surfaces of revolution , 2021, Physical Review A.

[5]  M. Inguscio,et al.  Sound emission and annihilations in a programmable quantum vortex collider , 2021, Nature.

[6]  A. Farolfi,et al.  Manipulation of an elongated internal Josephson junction of bosonic atoms , 2021, Physical Review A.

[7]  A. Farolfi,et al.  Quantum-torque-induced breaking of magnetic interfaces in ultracold gases , 2020, Nature Physics.

[8]  A. Fetter,et al.  Dynamics of massive point vortices in a binary mixture of Bose-Einstein condensates , 2020, 2010.13765.

[9]  V. Penna,et al.  Vortices with massive cores in a binary mixture of Bose-Einstein condensates , 2019, Physical Review A.

[10]  S. Yasui,et al.  Domain walls in neutron P23 superfluids in neutron stars , 2019, Physical Review C.

[11]  M. Nitta,et al.  Collision dynamics and reactions of fractional vortex molecules in coherently coupled Bose-Einstein condensates , 2019, 1912.09014.

[12]  A. Recati,et al.  Decay of the relative phase domain wall into confined vortex pairs: The case of a coherently coupled bosonic mixture , 2019, Physical Review A.

[13]  K. Kasamatsu,et al.  Transverse instability and disintegration of a domain wall of a relative phase in coherently coupled two-component Bose-Einstein condensates , 2019, Physical Review A.

[14]  V. Dmitriev,et al.  Half-quantum vortices and walls bounded by strings in the polar-distorted phases of topological superfluid 3He , 2018, Nature Communications.

[15]  T. Simula,et al.  Order from chaos: Observation of large-scale flow from turbulence in a two-dimensional superfluid , 2018, 1801.06952.

[16]  J. Brand,et al.  Quasiparticles of widely tuneable inertial mass: The dispersion relation of atomic Josephson vortices and related solitary waves , 2017, 1709.00403.

[17]  D. Paganin,et al.  Motion of vortices in inhomogeneous Bose-Einstein condensates , 2017, 1708.09202.

[18]  Ashton S. Bradley,et al.  Emergent Non-Eulerian Hydrodynamics of Quantum Vortices in Two Dimensions. , 2017, Physical review letters.

[19]  A. Fetter,et al.  Vortex dynamics in coherently coupled Bose-Einstein condensates , 2016, 1609.03966.

[20]  J. Brand,et al.  Asymptotically solvable model for a solitonic vortex in a compressible superfluid , 2016, 1608.08701.

[21]  A. Recati,et al.  Confinement and precession of vortex pairs in coherently coupled Bose-Einstein condensates , 2016, 1601.03695.

[22]  J. Dalibard,et al.  Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas , 2014, Nature Communications.

[23]  P. Kevrekidis,et al.  Nonlinear dressed states at the miscibility-immiscibility threshold , 2014, 1407.8049.

[24]  P. Drummond,et al.  Quantum simulations of the early universe , 2013, 1305.5314.

[25]  M. Nitta,et al.  Crossover between integer and fractional vortex lattices in coherently coupled two-component Bose-Einstein condensates. , 2013, Physical review letters.

[26]  A. Recati,et al.  A study of coherently coupled two-component Bose-Einstein condensates , 2013, 1301.6864.

[27]  J. Brand,et al.  Sign of coupling in barrier-separated Bose-Einstein condensates and stability of double-ring systems , 2008, 0805.4447.

[28]  A. Kuklov,et al.  Atomic Josephson vortices , 2005, cond-mat/0508342.

[29]  A. Kuklov,et al.  Josephson vortex between two atomic Bose-Einstein condensates , 2005 .

[30]  Masahito Ueda,et al.  Vortex molecules in coherently coupled two-component Bose-Einstein condensates. , 2004, Physical review letters.

[31]  J. García-Ripoll,et al.  Split vortices in optically coupled Bose-Einstein condensates , 2001, cond-mat/0109422.

[32]  M. Stephanov,et al.  Domain walls of relative phase in two-component Bose-Einstein condensates , 2001, cond-mat/0103451.

[33]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[34]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[35]  C. Wieman,et al.  Watching a Superfluid Untwist Itself: Recurrence of Rabi Oscillations in a Bose-Einstein Condensate , 1999, cond-mat/9906288.

[36]  A. Smerzi,et al.  Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates , 1997, cond-mat/9706221.

[37]  M. Thouless,et al.  Transverse force on a quantized vortex in a superfluid. , 1996, Physical review letters.

[38]  W. Vinen The detection of single quanta of circulation in liquid helium II , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.