Gluconate suppresses seizure activity in developing brains by inhibiting CLC-3 chloride channels

[1]  R. Weinstein,et al.  Prophylactic infusion of calcium gluconate to prevent a symptomatic fall in plasma ionized calcium during therapeutic plasma exchange: A comparison of two methods , 2018, Journal of clinical apheresis.

[2]  Yi Wang,et al.  Depolarized GABAergic Signaling in Subicular Microcircuits Mediates Generalized Seizure in Temporal Lobe Epilepsy , 2017, Neuron.

[3]  Vikaas S. Sohal,et al.  Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures , 2017, Neuron.

[4]  D. Stellwagen,et al.  Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment , 2016, Biological Psychiatry.

[5]  R. Köhling,et al.  Potassium Channels in Epilepsy. , 2016, Cold Spring Harbor perspectives in medicine.

[6]  M. Hanna,et al.  The Role of Calcium Channels in Epilepsy. , 2016, Cold Spring Harbor perspectives in medicine.

[7]  C. Fahlke,et al.  Neuronal ClC-3 Splice Variants Differ in Subcellular Localizations, but Mediate Identical Transport Functions* , 2015, The Journal of Biological Chemistry.

[8]  N. Marlow,et al.  Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial , 2015, The Lancet Neurology.

[9]  H. Sabir,et al.  Epilepsy: Neonatal seizures still lack safe and effective treatment , 2015, Nature Reviews Neurology.

[10]  Takashi Katsu,et al.  Targeting LDH enzymes with a stiripentol analog to treat epilepsy , 2015, Science.

[11]  E. Aronica,et al.  Blood-brain barrier dysfunction, seizures and epilepsy. , 2015, Seminars in cell & developmental biology.

[12]  Y. Bozzi,et al.  Early depolarizing GABA controls critical period plasticity in the rat visual cortex , 2014, Nature Neuroscience.

[13]  J. A. Payne,et al.  Cation-chloride cotransporters in neuronal development, plasticity and disease , 2014, Nature Reviews Neuroscience.

[14]  Changlian Zhu,et al.  The immune response after hypoxia-ischemia in a mouse model of preterm brain injury , 2014, Journal of Neuroinflammation.

[15]  Changlian Zhu,et al.  The immune response after hypoxia-ischemia in a mouse model of preterm brain injury , 2014, Journal of Neuroinflammation.

[16]  Andrew M. White,et al.  Characterization of neonatal seizures in an animal model of hypoxic‐ischemic encephalopathy , 2014, Epilepsia.

[17]  J. Fritschy,et al.  GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system , 2014, The European journal of neuroscience.

[18]  K. Kaila,et al.  Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures , 2014, Epilepsia.

[19]  M. Morris,et al.  Role of monocarboxylate transporters in drug delivery to the brain. , 2014, Current pharmaceutical design.

[20]  W. Catterall Sodium channels, inherited epilepsy, and antiepileptic drugs. , 2014, Annual review of pharmacology and toxicology.

[21]  Y. Saponjian,et al.  Local impermeant anions establish the neuronal chloride concentration. , 2014, Science.

[22]  G. Feng,et al.  Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. , 2014, Methods in molecular biology.

[23]  W. Löscher,et al.  Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments , 2013, Neuropharmacology.

[24]  Tim T. Chen,et al.  Novel brain expression of ClC-1 chloride channels and enrichment of CLCN1 variants in epilepsy , 2013, Neurology.

[25]  F. Jensen,et al.  Bumetanide Enhances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures , 2013, PloS one.

[26]  D. Nelson,et al.  CLC‐3 chloride channels moderate long‐term potentiation at Schaffer collateral–CA1 synapses , 2013, The Journal of physiology.

[27]  Anup D. Patel,et al.  Pharmacological Treatment of Neonatal Seizures , 2013, Journal of child neurology.

[28]  D. Janigro,et al.  Blood–brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches , 2012, Epilepsia.

[29]  N. Saunders,et al.  Barriers in the developing brain and Neurotoxicology. , 2012, Neurotoxicology.

[30]  Y. Jan,et al.  Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons , 2012, Neuron.

[31]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[32]  G. Pizzolato,et al.  A case of hypocalcemia-related epilepsia partialis continua , 2011, Seizure.

[33]  B. Pál,et al.  Ca++ activated Cl-currents are dispensable for olfaction , 2019 .

[34]  A. Kriegstein,et al.  Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. , 2011, Cerebral cortex.

[35]  D. Nelson,et al.  Presynaptic CLC-3 Determines Quantal Size of Inhibitory Transmission in the Hippocampus , 2011, Nature Neuroscience.

[36]  R. Nicoll,et al.  Metabolic Control of Vesicular Glutamate Transport and Release , 2010, Neuron.

[37]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[38]  Ilka Rinke,et al.  ClC-2 Voltage-Gated Channels Constitute Part of the Background Conductance and Assist Chloride Extrusion , 2010, The Journal of Neuroscience.

[39]  Christopher H. Thompson,et al.  Chloride channels: often enigmatic, rarely predictable. , 2010, Annual review of physiology.

[40]  T. Jentsch,et al.  No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy , 2010, Nature Genetics.

[41]  M. Bialer,et al.  Key factors in the discovery and development of new antiepileptic drugs , 2010, Nature Reviews Drug Discovery.

[42]  F. Jensen Neonatal seizures: an update on mechanisms and management. , 2009, Clinics in perinatology.

[43]  Kevin J. Staley,et al.  Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures , 2009, Neuron.

[44]  Christian E Elger,et al.  CLCN2 variants in idiopathic generalized epilepsy , 2009, Nature Genetics.

[45]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[46]  H. Lerche,et al.  Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy , 2009, Human Mutation.

[47]  Qi Xu,et al.  Protective Effect of Resveratrol against Kainate-induced Temporal Lobe Epilepsy in Rats , 2009, Neurochemical Research.

[48]  Alan S. Verkman,et al.  Chloride channels as drug targets , 2009, Nature Reviews Drug Discovery.

[49]  H. Sontheimer,et al.  ClC3 Is a Critical Regulator of the Cell Cycle in Normal and Malignant Glial Cells , 2008, The Journal of Neuroscience.

[50]  H. Luhmann,et al.  Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse , 2007, Neuropharmacology.

[51]  D. Purpura,et al.  NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders , 2007, Nature Reviews Neuroscience.

[52]  R. Khazipov,et al.  Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery , 2006, Science.

[53]  V. Bindokas,et al.  CLC-3 Channels Modulate Excitatory Synaptic Transmission in Hippocampal Neurons , 2006, Neuron.

[54]  F. Karet,et al.  A serum potassium level above 10 mmol/l in a patient predisposed to hypokalemia , 2006, Nature Clinical Practice Nephrology.

[55]  P. Warren,et al.  Cyclothiazide induces robust epileptiform activity in rat hippocampal neurons both in vitro and in vivo , 2006, The Journal of physiology.

[56]  F. Jensen,et al.  NKCC1 transporter facilitates seizures in the developing brain , 2005, Nature Medicine.

[57]  William J Moody,et al.  Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. , 2005, Physiological reviews.

[58]  H. Sontheimer,et al.  Expression of Voltage-Gated Chloride Channels in Human Glioma Cells , 2003, The Journal of Neuroscience.

[59]  B. Schutte,et al.  Altered GABAergic function accompanies hippocampal degeneration in mice lacking ClC-3 voltage-gated chloride channels , 2002, Brain Research.

[60]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[61]  S. Weinman,et al.  The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. , 2002, American journal of physiology. Cell physiology.

[62]  N Paneth,et al.  Phenobarbital compared with phenytoin for the treatment of neonatal seizures. , 1999, The New England journal of medicine.

[63]  A. N. van den Pol,et al.  Excitatory actions of GABA in developing rat hypothalamic neurones. , 1996, The Journal of physiology.

[64]  D. Hirtz,et al.  Phenobarbital for febrile seizures--effects on intelligence and on seizure recurrence. , 1990, The New England journal of medicine.

[65]  D. T. Sawyer,et al.  Metal-Gluconate Complexes , 1964 .