Analisis Sentimen pada Twitter Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine
暂无分享,去创建一个
Kemacetan yang terjadi di kota besar di Indonesia diakibatkan oleh menjamurnya penggunaan kendaraan pribadi. Solusi untuk mengurangi kemacetan tersebut adalah dengan peningkatan penggunaan transportasi umum darat dalam kota, yang nyatanya masih belum begitu diminati masyarakat. Sebagian masyarakat menyampaikan pendapat dan opininya mengenai penggunaan transportasi umum dalam kota melalui Twitter. Opini tersebut dapat dimanfaatkan sebagai bahan analisis sentimen untuk mengetahui penilaian pelayanan transportasi umum darat dalam kota apakah positif atau negatif, serta mengetahui faktor opini apa yang sering muncul. Hasil dari analisis sentimen tersebut dapat membantu dalam penilaian dan evaluasi terhadap penggunaan transportasi umum darat dalam kota. Dengan dilakukannya peningkatan fasilitas dan pelayanan berdasarkan hasil analisis sentimen, maka diharapkan masyarakat akan beralih menggunakan transportasi umum darat dalam kota, yang tentunya akan mengurangi kemacetan. Analisis sentimen dengan metode Support Vector Machine (SVM) dilakukan dengan pengujian terhadap komposisi data yang bervariasi. Dari hasil pengujian untuk kasus pada penelitian ini didapatkan bahwa SVM dapat diimplementasikan dengan nilai akurasi mencapai 78,12%. Variabel yang berpengaruh terhadap akurasi adalah jumlah data, perbandingan jumlah data latih dan uji, serta perbandingan jumlah data positif dan negatif yang digunakan. Kata Kunci : Transportasi Umum Darat Dalam Kota, Analisis Sentimen, Twitter, Support Vector Machine
[1] Ayu Purwarianti,et al. HMM Based Part-of-Speech Tagger f or Bahasa Indonesia , 2010 .
[2] Marvin L. Manheim,et al. Fundamentals of Transportation Systems Analysis, Volume 1: Basic Concepts , 1979 .