Signature of type-II Weyl semimetal phase in MoTe2

Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.

[1]  Arash A. Mostofi,et al.  A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .

[2]  P. Hosur Friedel oscillations due to Fermi arcs in Weyl semimetals , 2012, 1208.0027.

[3]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[4]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[5]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[6]  K. Landsteiner Anomalous transport of Weyl fermions in Weyl semimetals , 2013, 1306.4932.

[7]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[8]  Daniel S. Sanchez,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in Mo$_x$W$_{1-x}$Te$_2$ , 2016 .

[9]  C. Felser,et al.  Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.

[10]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[11]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[12]  Zhongkai Liu,et al.  Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[13]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[14]  M Zahid Hasan,et al.  Topological electronic structure and Weyl semimetal in the TlBiSe2class of semiconductors , 2012, 1209.5896.

[15]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[16]  A. Vishwanath,et al.  Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals , 2014, Nature Communications.

[17]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[18]  M. Troyer,et al.  MoTe2: Weyl and Line Node Topological Metal , 2015 .

[19]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[20]  R. Friend,et al.  Electrical resistivity anomaly in β-MoTe2 (metallic behaviour) , 1978 .

[21]  Su-Yang Xu,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.

[22]  Guanghou Wang,et al.  Unoccupied electronic structure and signatures of topological Fermi arcs in the Weyl semimetal candidate Mo$_x$W$_{1-x}$Te$_2$ , 2015, 1512.09099.

[23]  R. Dirks,et al.  Anguillicola crassus Infection Significantly Affects the Silvering Related Modifications in Steady State mRNA Levels in Gas Gland Tissue of the European Eel , 2016, Front. Physiol..

[24]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[25]  R. Friend,et al.  Electrical resistivity anomaly in P-MoTe, , 1978 .

[26]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[27]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[28]  G. F. Chen,et al.  Experimental discovery of Weyl semimetal TaAs , 2015 .

[29]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[30]  D. Vanderbilt,et al.  Weyl semimetals from noncentrosymmetric topological insulators , 2014, 1409.6399.

[31]  Guanghou Wang,et al.  Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate Mo x W 1 − x Te 2 , 2016 .

[32]  Chaoxing Liu,et al.  Chiral gauge field and axial anomaly in a Weyl semimetal , 2012, 1204.6551.

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[35]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[36]  J. Carbotte,et al.  Magneto-optical conductivity of Weyl semimetals , 2013, 1305.0275.

[37]  Chaoxing Liu,et al.  Prediction of a Weyl Semimetal in Hg$_{1-x-y}$Cd$_x$Mn$_y$Te , 2013, 1309.6327.

[38]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[39]  V. Aji,et al.  Excitonic phases from Weyl semimetals. , 2012, Physical review letters.

[40]  Yulin Chen Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy , 2012 .

[41]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[42]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[43]  Su-Yang Xu,et al.  Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.