Extracting spatial information from temporal odor patterns: Insights from insects.

[1]  Damon A. Clark,et al.  Odour motion sensing enhances navigation of complex plumes , 2022, Nature.

[2]  T. Emonet,et al.  Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments , 2023, PLoS Comput. Biol..

[3]  J. Vilà‐Guerau de Arellano,et al.  Assessing the representativity of NH3 measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source , 2022, Atmospheric Chemistry and Physics.

[4]  G. Jefferis,et al.  Generating parallel representations of position and identity in the olfactory system , 2022, Cell.

[5]  Zhaoqun Li,et al.  Variation in the ratio of compounds in a plant volatile blend during transmission by wind , 2022, Scientific Reports.

[6]  T. Emonet,et al.  Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes , 2022, eLife.

[7]  M. Vergassola,et al.  Alternation emerges as a multi-modal strategy for turbulent odor navigation , 2021, bioRxiv.

[8]  V. Murthy,et al.  Olfactory Sensing and Navigation in Turbulent Environments , 2021, Annual Review of Condensed Matter Physics.

[9]  Brian H. Smith,et al.  Active sensing in a dynamic olfactory world , 2021, Journal of Computational Neuroscience.

[10]  L. Rosasco,et al.  Learning to predict target location with turbulent odor plumes , 2021, eLife.

[11]  Andreas T. Schaefer,et al.  Fast odour dynamics are encoded in the olfactory system and guide behaviour , 2021, Nature.

[12]  R. Cardé Navigation Along Windborne Plumes of Pheromone and Resource-Linked Odors. , 2020, Annual review of entomology.

[13]  Pavan Kumar Kaushik,et al.  Characterizing long-range search behavior in Diptera using complex 3D virtual environments , 2020, Proceedings of the National Academy of Sciences.

[14]  Nirag Kadakia,et al.  Walking Drosophila navigate complex plumes using stochastic decisions biased by the timing of odor encounters , 2020, bioRxiv.

[15]  Vivek Jayaraman,et al.  Mechanisms Underlying the Neural Computation of Head Direction. , 2019, Annual review of neuroscience.

[16]  P. Szyszka,et al.  Segregation of Unknown Odors From Mixtures Based on Stimulus Onset Asynchrony in Honey Bees , 2019, Front. Behav. Neurosci..

[17]  T. Triphan,et al.  Olfactory Object Recognition Based on Fine-Scale Stimulus Timing in Drosophila , 2018, bioRxiv.

[18]  Bard Ermentrout,et al.  Information-theoretic analysis of realistic odor plumes: What cues are useful for determining location? , 2018, PLoS Comput. Biol..

[19]  Paul Szyszka,et al.  High Precision of Spike Timing across Olfactory Receptor Neurons Allows Rapid Odor Coding in Drosophila , 2018, iScience.

[20]  Jonathan D Victor,et al.  Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies , 2018, bioRxiv.

[21]  Adrienne L. Fairhall,et al.  History dependence in insect flight decisions during odor tracking , 2018, PLoS Comput. Biol..

[22]  Thierry Emonet,et al.  Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli , 2017, eLife.

[23]  Paul Szyszka,et al.  A High-Bandwidth Dual-Channel Olfactory Stimulator for Studying Temporal Sensitivity of Olfactory Processing , 2017, Chemical senses.

[24]  Michael Schmuker,et al.  Exploiting plume structure to decode gas source distance using metal-oxide gas sensors , 2016, 1602.01815.

[25]  James M. Jeanne,et al.  Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy , 2015, Neuron.

[26]  J. Crimaldi,et al.  Joint probabilities and mixing of isolated scalars emitted from parallel jets , 2015, Journal of Fluid Mechanics.

[27]  R. C. Gerkin,et al.  High-speed odor transduction and pulse tracking by insect olfactory receptor neurons , 2014, Proceedings of the National Academy of Sciences.

[28]  M. Vergassola,et al.  Odor Landscapes in Turbulent Environments , 2014, 1411.3507.

[29]  Jeffrey A. Riffell,et al.  Flower discrimination by pollinators in a dynamic chemical environment , 2014, Science.

[30]  Michael H. Dickinson,et al.  Plume-Tracking Behavior of Flying Drosophila Emerges from a Set of Distinct Sensory-Motor Reflexes , 2014, Current Biology.

[31]  Steven M. Peterson,et al.  A spatiotemporal coding mechanism for background-invariant odor recognition , 2013, Nature Neuroscience.

[32]  E. Villermaux,et al.  The mixing of distant sources , 2013 .

[33]  John R. Carlson,et al.  Intensity Invariant Dynamics and Odor-Specific Latencies in Olfactory Receptor Neuron Response , 2013, The Journal of Neuroscience.

[34]  Paul Szyszka,et al.  The Speed of Smell: Odor-Object Segregation within Milliseconds , 2012, PloS one.

[35]  Ring T. Cardé,et al.  Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegypti L.) in response to plumes of carbon dioxide and human skin odour , 2011, Journal of Experimental Biology.

[36]  M. M. Sadek,et al.  Attraction Modulated by Spacing of Pheromone Components and Anti-attractants in a Bark Beetle and a Moth , 2011, Journal of Chemical Ecology.

[37]  Michael H. Dickinson,et al.  Olfactory modulation of flight in Drosophila is sensitive, selective and rapid , 2010, Journal of Experimental Biology.

[38]  Jeffrey A. Riffell,et al.  Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment , 2008, Journal of Chemical Ecology.

[39]  Andrew S. French,et al.  Dynamic properties of Drosophila olfactory electroantennograms , 2008, Journal of Comparative Physiology A.

[40]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[41]  R. Menzel,et al.  Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. , 2005, Journal of neurophysiology.

[42]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[43]  W. Leal,et al.  Peripheral Coding of Sex Pheromone and a Behavioral Antagonist in the Japanese Beetle, Popillia japonica , 2002, Journal of Chemical Ecology.

[44]  J. Koseff,et al.  High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume , 2001 .

[45]  R. Cardé,et al.  Spatial and temporal structures of pheromone plumes in fields and forests , 2000 .

[46]  D. Laloi,et al.  Individual Learning Ability and Complex Odor Recognition in the Honey Bee, Apis mellifera L. , 1999, Journal of Insect Behavior.

[47]  Geier,et al.  Influence of odour plume structure on upwind flight of mosquitoes towards hosts , 1999, The Journal of experimental biology.

[48]  S. Chandra,et al.  An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). , 1998, The Journal of experimental biology.

[49]  T. Baker,et al.  Moth uses fine tuning for odour resolution , 1998, Nature.

[50]  E. Yee,et al.  The vertical structure of concentration fluctuation statistics in plumes dispersing in the atmospheric surface layer , 1995 .

[51]  J. Hopfield,et al.  Decomposition of a mixture of signals in a model of the olfactory bulb. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Cardé,et al.  Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths , 1994, Nature.

[53]  Eugene Yee,et al.  Statistical characteristics of concentration fluctuations in dispersing plumes in the atmospheric surface layer , 1993 .

[54]  Ryohei Kanzaki,et al.  Self-generated Zigzag Turning of Bombyx mori Males during Pheromone-mediated Upwind Walking(Physology) , 1992 .

[55]  J. Atema,et al.  Spatial Information in the Three-Dimensional Fine Structure of an Aquatic Odor Plume. , 1991, The Biological bulletin.

[56]  J J Hopfield,et al.  Olfactory computation and object perception. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[57]  P. Witzgall,et al.  Wind-tunnel study on attraction inhibitor in maleColeophora laricella Hbn. (Lepidoptera: Coleophoridae) , 1991, Journal of Chemical Ecology.

[58]  Thomas C. Baker,et al.  Field and laboratory electroantennographic measurements of pheromone plume structure correlated with oriental fruit moth behaviour , 1989 .

[59]  Alexander Borst,et al.  Osmotropotaxis inDrosophila melanogaster , 1982, Journal of comparative physiology.

[60]  A. Robins,et al.  Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer , 1982, Journal of Fluid Mechanics.

[61]  A. Robins,et al.  The effects of source size on concentration fluctuations in plumes , 1982 .

[62]  J. Kennedy,et al.  Pheromone-Regulated Anemotaxis in Flying Moths , 1974, Science.

[63]  R. Menzel,et al.  Rapid Odor Processing in the Honeybee Antennal Lobe Network , 2008, Front. Comput. Neurosci..

[64]  R. W. Hukin,et al.  Comparison of the effect of onset asynchrony on auditory grouping in pitch matching and vowel identification , 1995, Perception & psychophysics.

[65]  Geoffrey Ingram Taylor,et al.  Diffusion by Continuous Movements , 1922 .