MicroRNA control of signal transduction

[1]  R. Kamm,et al.  Transitions Between Epithelial and Mesenchymal States in Microfluidic Platform: Acquisition of Malignant and Stem Cell Traits , 2010 .

[2]  S. Kauppinen,et al.  Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection , 2010, Science.

[3]  Keara M. Lane,et al.  Dicer1 functions as a haploinsufficient tumor suppressor. , 2009, Genes & development.

[4]  G. Evan,et al.  p53 — a Jack of all trades but master of none , 2009, Nature Reviews Cancer.

[5]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[6]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[7]  Raquel Norel,et al.  MicroRNA‐23b cluster microRNAs regulate transforming growth factor‐beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads , 2009, Hepatology.

[8]  Hiroshi I. Suzuki,et al.  Modulation of microRNA processing by p53 , 2009, Nature.

[9]  Reuven Agami,et al.  The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. , 2009, Genes & development.

[10]  G. Pan,et al.  MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells , 2009, Cell.

[11]  Justin J. Cassidy,et al.  A MicroRNA Imparts Robustness against Environmental Fluctuation during Development , 2009, Cell.

[12]  Raphael Kopan,et al.  The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism , 2009, Cell.

[13]  Antonio Rosato,et al.  A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis , 2009, Cell.

[14]  R. Weinberg,et al.  Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits , 2009, Nature Reviews Cancer.

[15]  H. Lodish,et al.  MicroRNA-125b is a novel negative regulator of p53. , 2009, Genes & development.

[16]  M. Peter Let-7 and miR-200 microRNAs: Guardians against pluripotency and cancer progression , 2009, Cell cycle.

[17]  E. Fuchs,et al.  Epidermal homeostasis: a balancing act of stem cells in the skin , 2009, Nature Reviews Molecular Cell Biology.

[18]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[19]  Hazel Sive,et al.  Coherent but overlapping expression of microRNAs and their targets during vertebrate development. , 2009, Genes & development.

[20]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[21]  Andrea Ventura,et al.  MicroRNAs and Cancer: Short RNAs Go a Long Way , 2009, Cell.

[22]  Olivier Voinnet,et al.  Revisiting the principles of microRNA target recognition and mode of action , 2009, Nature Reviews Molecular Cell Biology.

[23]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[24]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[25]  K. Stankunas,et al.  Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126 , 2008, Development.

[26]  Chi-Chung Hui,et al.  Hedgehog signaling in development and cancer. , 2008, Developmental cell.

[27]  J. G. Patton,et al.  Regulation of zebrafish fin regeneration by microRNAs , 2008, Proceedings of the National Academy of Sciences.

[28]  Sean J. Morrison,et al.  Hmga2 Promotes Neural Stem Cell Self-Renewal in Young but Not Old Mice by Reducing p16Ink4a and p19Arf Expression , 2008, Cell.

[29]  I. Bozzoni,et al.  Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells , 2008, The EMBO journal.

[30]  I. Gérin,et al.  The microRNA miR-8 is a conserved negative regulator of Wnt signaling , 2008, Proceedings of the National Academy of Sciences.

[31]  M. F. Shannon,et al.  A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. , 2008, Cancer research.

[32]  V. Ambros,et al.  A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. , 2008, Genes & development.

[33]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[34]  I. Bozzoni,et al.  Primary microRNA transcripts are processed co-transcriptionally , 2008, Nature Structural &Molecular Biology.

[35]  F. Slack,et al.  let-7 microRNAs in development, stem cells and cancer. , 2008, Trends in molecular medicine.

[36]  Ru-Fang Yeh,et al.  miR-126 regulates angiogenic signaling and vascular integrity. , 2008, Developmental cell.

[37]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[38]  J. Thomson,et al.  Pluripotent stem cell lines. , 2008, Genes & development.

[39]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[40]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[41]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[42]  Elaine Fuchs,et al.  A skin microRNA promotes differentiation by repressing ‘stemness’ , 2008, Nature.

[43]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[44]  Philip C. J. Donoghue,et al.  MicroRNAs and the advent of vertebrate morphological complexity , 2008, Proceedings of the National Academy of Sciences.

[45]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[46]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[47]  Bernhard Schmierer,et al.  TGFβ–SMAD signal transduction: molecular specificity and functional flexibility , 2007, Nature Reviews Molecular Cell Biology.

[48]  Norbert Perrimon,et al.  Functional screening identifies miR-315 as a potent activator of Wingless signaling , 2007, Proceedings of the National Academy of Sciences.

[49]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[50]  A. Schier,et al.  Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430 , 2007, Science.

[51]  Uyen Tran,et al.  MicroRNA control of Nodal signalling , 2007, Nature.

[52]  K. Ghoshal,et al.  MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. , 2007, Gastroenterology.

[53]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[54]  J. Lötvall,et al.  Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells , 2007, Nature Cell Biology.

[55]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[56]  F. McKeon,et al.  p63 Is Essential for the Proliferative Potential of Stem Cells in Stratified Epithelia , 2007, Cell.

[57]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[58]  N. Rajewsky,et al.  Regulation of the Germinal Center Response by MicroRNA-155 , 2007, Science.

[59]  F. Tang,et al.  Maternal microRNAs are essential for mouse zygotic development. , 2007, Genes & development.

[60]  K. Harvey,et al.  The Salvador–Warts–Hippo pathway — an emerging tumour-suppressor network , 2007, Nature Reviews Cancer.

[61]  G. Budd Faculty Opinions recommendation of The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. , 2007 .

[62]  N. Rajewsky,et al.  The evolution of gene regulation by transcription factors and microRNAs , 2007, Nature Reviews Genetics.

[63]  Jun S. Song,et al.  High-throughput mapping of the chromatin structure of human promoters , 2007, Nature Biotechnology.

[64]  J. Massagué,et al.  Cancer Metastasis: Building a Framework , 2006, Cell.

[65]  Hans Clevers,et al.  Wnt/β-Catenin Signaling in Development and Disease , 2006, Cell.

[66]  G. Halder,et al.  The bantam MicroRNA Is a Target of the Hippo Tumor-Suppressor Pathway , 2006, Current Biology.

[67]  J. Gurdon From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. , 2006, Annual review of cell and developmental biology.

[68]  S. Cohen,et al.  The Hippo Pathway Regulates the bantam microRNA to Control Cell Proliferation and Apoptosis in Drosophila , 2006, Cell.

[69]  Joel S Parker,et al.  Extensive post-transcriptional regulation of microRNAs and its implications for cancer. , 2006, Genes & development.

[70]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[71]  K. Nairz,et al.  Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. , 2006, Developmental biology.

[72]  Tak W. Mak,et al.  Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis , 2006, Nature Reviews Cancer.

[73]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[74]  A. Teleman,et al.  Drosophila lacking microRNA miR-278 are defective in energy homeostasis. , 2006, Genes & development.

[75]  E. Davidson,et al.  Gene Regulatory Networks and the Evolution of Animal Body Plans , 2006, Science.

[76]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Xin Li,et al.  A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye , 2005, Cell.

[78]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[79]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[80]  Oliver H. Tam,et al.  Characterization of Dicer-deficient murine embryonic stem cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Debora S. Marks,et al.  Antisense-Mediated Depletion Reveals Essential and Specific Functions of MicroRNAs in Drosophila Development , 2005, Cell.

[82]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[83]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[84]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[85]  C. Niehrs Regionally specific induction by the Spemann–Mangold organizer , 2004, Nature Reviews Genetics.

[86]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[87]  J. Klein,et al.  Positive and Negative Roles of p85α and p85β Regulatory Subunits of Phosphoinositide 3-Kinase in Insulin Signaling* , 2003, Journal of Biological Chemistry.

[88]  Scott Barolo,et al.  Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. , 2002, Genes & development.

[89]  R. Baron,et al.  Spred is a Sprouty-related suppressor of Ras signalling , 2001, Nature.

[90]  M. Oelgeschläger,et al.  The establishment of spemann's organizer and patterning of the vertebrate embryo , 2000, Nature Reviews Genetics.

[91]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[92]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[93]  J. Schlessinger Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[94]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[95]  Pier Paolo Pandolfi,et al.  The Multiple Roles of PTEN in Tumor Suppression , 2000, Cell.

[96]  C Burks,et al.  The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. , 1998, Development.

[97]  E. Lai,et al.  The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. , 1997, Development.

[98]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[99]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[100]  B. S. Baker,et al.  Segmental aneuploidy and the genetic gross structure of the Drosophila genome. , 1972, Genetics.

[101]  Craig R Moores,et al.  H-40, an antigen controlled by an Igh linked gene and recognized by cytotoxic T lymphocytes. I. Genetic analysis of H-40 and distribution of its product on B cell tumors , 1984, The Journal of experimental medicine.

[102]  Kevin Kim,et al.  Silencing by small RNAs is linked to endosomal trafficking , 2009, Nature Cell Biology.

[103]  Qinxi Li,et al.  Axin determines cell fate by controlling the p53 activation threshold after DNA damage , 2009, Nature Cell Biology.

[104]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[105]  Stephen Pulman,et al.  Building the Framework , 1996 .

[106]  J. Schlessinger,et al.  Signaling by Receptor Tyrosine Kinases , 1993 .

[107]  Jun S. Song,et al.  Chromatin structure analyses identify miRNA promoters , 2008 .