Tonic signaling from O2 sensors sets neural circuit activity and behavioral state

Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that Caenorhabditis elegans O2-sensing neurons are tonic receptors that continuously signal ambient [O2] to set the animal's behavioral state. Sustained signaling relied on a Ca2+ relay involving L-type voltage-gated Ca2+ channels, the ryanodine and the inositol-1,4,5-trisphosphate receptors. Tonic activity evoked continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O2]. Sustained O2 receptor signaling was propagated to downstream neural circuits, including the hub interneuron RMG. O2 receptors evoked similar locomotory states at particular O2 concentrations, regardless of previous d[O2]/dt. However, a phasic component of the URX receptors' response to high d[O2]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enabled transient reorientation movements shaped by d[O2]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change.

[1]  S. Tovey,et al.  IP(3) receptors: toward understanding their activation. , 2010, Cold Spring Harbor perspectives in biology.

[2]  Evan Z. Macosko,et al.  A huband-spoke circuit drives pheromone attraction and social behaviour in C . elegans , 2009 .

[3]  Dai Fukumura,et al.  In vivo imaging of tumors. , 2010, Cold Spring Harbor protocols.

[4]  J. Kaplan,et al.  The EGL-21 Carboxypeptidase E Facilitates Acetylcholine Release at Caenorhabditis elegans Neuromuscular Junctions , 2003, The Journal of Neuroscience.

[5]  M. D. Bono,et al.  Soluble Guanylate Cyclases Act in Neurons Exposed to the Body Fluid to Promote C. elegans Aggregation Behavior , 2004, Current Biology.

[6]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  B. Barisas,et al.  Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope , 2009, Microscopy research and technique.

[9]  M. de Bono,et al.  Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior , 2011, Neuron.

[10]  A. Craig,et al.  How do you feel — now? The anterior insula and human awareness , 2009, Nature Reviews Neuroscience.

[11]  Mario de Bono,et al.  Behavioral Motifs and Neural Pathways Coordinating O2 Responses and Aggregation in C. elegans , 2006, Current Biology.

[12]  M. Gold,et al.  Nociceptor sensitization in pain pathogenesis , 2010, Nature Medicine.

[13]  K. Pearson,et al.  FUNCTIONS OF TONIC SENSORY INPUT IN INSECTS , 1977, Annals of the New York Academy of Sciences.

[14]  Dimitra K. Georgiou,et al.  Ryanodine receptors: structure, expression, molecular details, and function in calcium release. , 2010, Cold Spring Harbor perspectives in biology.

[15]  F. Zufall,et al.  The cellular and molecular basis of odor adaptation. , 2000, Chemical senses.

[16]  Gary Matthews,et al.  The diverse roles of ribbon synapses in sensory neurotransmission , 2010, Nature Reviews Neuroscience.

[17]  Subhajyoti De,et al.  Whole Genome Sequencing Highlights Genetic Changes Associated with Laboratory Domestication of C. elegans , 2010, PloS one.

[18]  Cornelia I. Bargmann,et al.  Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue , 2004, Nature.

[19]  I. Greenwald,et al.  Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. , 2001, Genetics.

[20]  J. Feldman,et al.  Breathing: rhythmicity, plasticity, chemosensitivity. , 2003, Annual review of neuroscience.

[21]  M. D. Bono,et al.  Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans , 2009, Nature.

[22]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[23]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[24]  R A L Dampney,et al.  LONG‐TERM REGULATION OF ARTERIAL BLOOD PRESSURE BY HYPOTHALAMIC NUCLEI: SOME CRITICAL QUESTIONS , 2005, Clinical and experimental pharmacology & physiology.

[25]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  H. Fares,et al.  Deciphering Endocytosis in Caenorhabditis elegans , 2002, Traffic.

[27]  O. Alvarez,et al.  Tonic and phasic receptor neurons in the vertebrate olfactory epithelium. , 2003, Biophysical journal.

[28]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[29]  F. McGlone,et al.  The cutaneous sensory system , 2010, Neuroscience & Biobehavioral Reviews.

[30]  J. Kaplan,et al.  PKC-1 regulates secretion of neuropeptides , 2007, Nature Neuroscience.

[31]  Mario de Bono,et al.  Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen , 2005, Current Biology.

[32]  Heping Cheng,et al.  Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle? , 2004, Cell calcium.

[33]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[34]  R. Kerr,et al.  Intracellular Ca2+ imaging in C. elegans. , 2006, Methods in molecular biology.

[35]  Mario de Bono,et al.  Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans , 2002, Nature.

[36]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[37]  R. Kerr,et al.  In Vivo Imaging of C. elegans Mechanosensory Neurons Demonstrates a Specific Role for the MEC-4 Channel in the Process of Gentle Touch Sensation , 2003, Neuron.

[38]  Navin Pokala,et al.  Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases , 2009, Neuron.

[39]  J. Tautz,et al.  Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. , 2000, Arthropod structure & development.

[40]  Liliane Schoofs,et al.  Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL‐21)‐deficient Caenorhabditis elegans as analyzed by mass spectrometry , 2007, Journal of neurochemistry.

[41]  Kyuhyung Kim,et al.  FMRFamide-related neuropeptide gene family in Caenorhabditis elegans , 1999, Brain Research.

[42]  Stefanie Redemann,et al.  Codon adaptation–based control of protein expression in C. elegans , 2011, Nature Methods.

[43]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[44]  William R. Schafer,et al.  utomated imaging of neuronal activity in freely behaving Caenorhabditis elegans uliette , 2010 .

[45]  M. Labouesse,et al.  Macoilin, a Conserved Nervous System–Specific ER Membrane Protein That Regulates Neuronal Excitability , 2011, PLoS Genetics.

[46]  Cori Bargmann,et al.  Laser killing of cells in Caenorhabditis elegans. , 1995, Methods in cell biology.

[47]  S. Gandevia,et al.  The kinaesthetic senses , 2009, The Journal of physiology.

[48]  R. Kerr,et al.  In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents , 2005, The EMBO journal.

[49]  F. Barth A phasic-tonic proprioceptor in the telson of the crayfish Procambarus clarki (Girard) , 1964, Zeitschrift für vergleichende Physiologie.

[50]  S. Morrison,et al.  Central control of thermogenesis in mammals , 2008, Experimental physiology.

[51]  D. Nässel Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? , 2009, Invertebrate Neuroscience.

[52]  L. Kruglyak,et al.  Recombinational Landscape and Population Genomics of Caenorhabditis elegans , 2009, PLoS genetics.