Structural and mechanistic paradigm of leptin receptor activation revealed by complexes with wild-type and antagonist leptins.

Leptin activates its cognate receptor (LR) to regulate body weight and metabolically costly processes, such as reproduction and immune responses. Despite such benevolent pleiotropy, leptin-mediated signaling has been implicated in autoimmune diseases and breast cancer, thereby rejuvenating interest in leptin antagonism. We present comparative biochemical and structural studies of the LR ectodomain (LRecto) in complex with wild-type and antagonist leptin variants. We show that high-affinity binding of leptin to the cytokine receptor homology 2 domain of LRecto primes interactions with the Ig-domain (LRIg) of another leptin-bound LRecto to establish a quaternary assembly. In contrast, antagonist leptin variants carrying mutations at the LRIg binding site only enable binary complexes with LRecto. Acetylation of free cysteines in LRecto also abrogates quaternary complexes, suggesting a functional role for intrareceptor disulfides. We propose a revised conceptual framework for LR activation whereby leptin activates predimerized LR at the cell surface to seed higher order complexes with 4:4 stoichiometry.

[1]  J. Halaas,et al.  Leptin and the regulation of body weight in mammals , 1998, Nature.

[2]  R. Eckel,et al.  Regulation of T cell-mediated hepatic inflammation by adiponectin and leptin. , 2005, Endocrinology.

[3]  V. De Rosa,et al.  A key role of leptin in the control of regulatory T cell proliferation. , 2007, Immunity.

[4]  B. Lambrecht,et al.  Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1 , 2012, Nature Structural &Molecular Biology.

[5]  R. Skoda,et al.  The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. , 1997, Molecular endocrinology.

[6]  C. Barb,et al.  Leptin and reproductive function. , 2012, Biochimie.

[7]  Anne-Sophie de Smet,et al.  Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. , 2008, Molecular endocrinology.

[8]  L. Tartaglia,et al.  Leptin Receptor (OB-R) Signaling , 1997, The Journal of Biological Chemistry.

[9]  I. Kovalszky,et al.  Efficacy of a leptin receptor antagonist peptide in a mouse model of triple-negative breast cancer. , 2011, European journal of cancer.

[10]  Yinghao Wu,et al.  Transforming binding affinities from 3D to 2D with application to cadherin clustering , 2011, Nature.

[11]  R. Jockers,et al.  Activation of the Leptin Receptor by a Ligand-induced Conformational Change of Constitutive Receptor Dimers* , 2003, Journal of Biological Chemistry.

[12]  M. Blackledge,et al.  Structural characterization of flexible proteins using small-angle X-ray scattering. , 2007, Journal of the American Chemical Society.

[13]  A. Gertler Development of leptin antagonists and their potential use in experimental biology and medicine , 2006, Trends in Endocrinology & Metabolism.

[14]  P. Froguel,et al.  Evidence for leptin receptor isoforms heteromerization at the cell surface , 2010, FEBS letters.

[15]  D. White,et al.  Ligand-independent Dimerization of the Extracellular Domain of the Leptin Receptor and Determination of the Stoichiometry of Leptin Binding* , 1997, The Journal of Biological Chemistry.

[16]  I. Wilson,et al.  Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. , 1999, Science.

[17]  S. Savvides,et al.  Human IL-34 and CSF-1 establish structurally similar extracellular assemblies with their common hematopoietic receptor. , 2013, Structure.

[18]  G. Bu,et al.  Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Dottore,et al.  The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation , 2008, Cell.

[20]  F. Haj,et al.  Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats , 2011, Proceedings of the National Academy of Sciences.

[21]  G. David,et al.  Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline , 2009 .

[22]  K. Garcia,et al.  Hexameric Structure and Assembly of the Interleukin-6/IL-6 α-Receptor/gp130 Complex , 2003, Science.

[23]  C. Rosen,et al.  Understanding leptin-dependent regulation of skeletal homeostasis. , 2012, Biochimie.

[24]  Dmitri I. Svergun,et al.  Electronic Reprint Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering Applied Crystallography Dammif, a Program for Rapid Ab-initio Shape Determination in Small-angle Scattering , 2022 .

[25]  O. Ilkayeva,et al.  Leptin therapy in insulin-deficient type I diabetes , 2010, Proceedings of the National Academy of Sciences.

[26]  J. M. Beals,et al.  Crystal structure of the obese protein Ieptin-E100 , 1997, Nature.

[27]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[28]  F. Carbone,et al.  Immunological functions of leptin and adiponectin. , 2012, Biochimie.

[29]  Hikmat N. Daghestani,et al.  Ligand-induced architecture of the leptin receptor signaling complex. , 2012, Molecular cell.

[30]  J. Tavernier,et al.  Leptin Receptor Activation Depends on Critical Cysteine Residues in Its Fibronectin Type III Subdomains* , 2005, Journal of Biological Chemistry.

[31]  Yang Zhang,et al.  COFACTOR: an accurate comparative algorithm for structure-based protein function annotation , 2012, Nucleic Acids Res..

[32]  I. Farooqi,et al.  Genetic approaches to understanding human obesity. , 2011, The Journal of clinical investigation.

[33]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[34]  S. Catalano,et al.  The multifactorial role of leptin in driving the breast cancer microenvironment , 2012, Nature Reviews Endocrinology.

[35]  J. Tavernier,et al.  Functional analysis of leptin receptor activation using a Janus kinase/signal transducer and activator of transcription complementation assay. , 2004, Molecular endocrinology.

[36]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[37]  A. Frazer,et al.  Leptin: A potential novel antidepressant , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[39]  V. Pande,et al.  Mechanistic and structural insight into the functional dichotomy between interleukin-2 and interleukin-15 , 2012, Nature Immunology.

[40]  K. Garcia,et al.  Signaling conformations of the tall cytokine receptor gp130 when in complex with IL-6 and IL-6 receptor , 2005, Nature Structural &Molecular Biology.

[41]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[42]  A. Hermetter,et al.  Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence. , 1999, Biophysical journal.

[43]  David J. Harvey,et al.  Glycoprotein Structural Genomics: Solving the Glycosylation Problem , 2007, Structure.

[44]  K. Garcia,et al.  Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. , 2005, Science.

[45]  K. Altundag,et al.  Leptin and breast cancer: an overview , 2012, Medical Oncology.

[46]  I. Polikarpov,et al.  Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale , 2010 .

[47]  Ju Yong Lee,et al.  Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro , 2001, Experimental & Molecular Medicine.

[48]  M. Taouis,et al.  Identification of the hydrophobic strand in the A-B loop of leptin as major binding site III: implications for large-scale preparation of potent recombinant human and ovine leptin antagonists. , 2005, The Biochemical journal.

[49]  J. Tavernier,et al.  Mapping of the interface between leptin and the leptin receptor CRH2 domain , 2005, Journal of Cell Science.

[50]  R. Aebersold,et al.  Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics* , 2010, Molecular & Cellular Proteomics.

[51]  P. Heinrich,et al.  Identification of the critical sequence elements in the cytoplasmic domain of leptin receptor isoforms required for Janus kinase/signal transducer and activator of transcription activation by receptor heterodimers. , 2002, Molecular endocrinology.

[52]  C. Wahlestedt,et al.  Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Tavernier,et al.  Mapping of the Leptin Binding Sites and Design of a Leptin Antagonist* , 2004, Journal of Biological Chemistry.

[54]  Andrej Sali,et al.  All-atom ensemble modeling to analyze small-angle x-ray scattering of glycosylated proteins. , 2013, Structure.

[55]  D. Hilton,et al.  An unusual cytokine:Ig-domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor , 2007, Proceedings of the National Academy of Sciences.

[56]  K. Garcia,et al.  Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. , 2011, Structure.

[57]  C. Procaccini,et al.  Leptin as an immunomodulator. , 2012, Molecular aspects of medicine.

[58]  P. Cresswell,et al.  Interleukin-2 signalling is modulated by a labile disulfide bond in the CD132 chain of its receptor , 2012, Open Biology.

[59]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[60]  T. Horvath,et al.  Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis , 2012, EMBO reports.

[61]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[62]  Shanchun Guo,et al.  Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. , 2012, Biochimica et biophysica acta.

[63]  M. Tota,et al.  Localization of leptin binding domain in the leptin receptor. , 1998, Molecular pharmacology.

[64]  J. Tavernier,et al.  Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor , 2000, FEBS letters.

[65]  Peter J. Artymiuk,et al.  Structure of the human obesity receptor leptin-binding domain reveals the mechanism of leptin antagonism by a monoclonal antibody. , 2012, Structure.

[66]  T. Arakawa,et al.  Human Leptin Receptor , 1998, The Journal of Biological Chemistry.

[67]  Anne-Sophie de Smet,et al.  Mapping of Binding Site III in the Leptin Receptor and Modeling of a Hexameric Leptin·Leptin Receptor Complex* , 2006, Journal of Biological Chemistry.

[68]  L. Tartaglia,et al.  Evidence for ligand‐independent homo‐oligomerization of leptin receptor (OB‐R) isoforms: A proposed mechanism permitting productive long‐form signaling in the presence of excess short‐form expression , 1999, Journal of Cellular Biochemistry.

[69]  Claus-Wilhelm von der Lieth,et al.  GlyProt: in silico glycosylation of proteins , 2005, Nucleic Acids Res..

[70]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[71]  Steven L. Cohen,et al.  Weight-reducing effects of the plasma protein encoded by the obese gene. , 1995, Science.

[72]  S. Savvides,et al.  Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases , 2012, Nature Reviews Cancer.