Soft Robotic Grippers Using Gecko-Inspired Fibrillar Adhesives for Three-Dimensional Surface Grasping

Researches on biological adhesive systems in nature have changed a perspective view on adhesion that it is not only the area of surface chemistry, but also mechanics of interfacial geometry which can significantly effect on fracture strength and load distribution on the contact interface. Various synthetic fibrillar adhesives in previous works have shown enhanced interfacial bond strength with the capacity of adhesion control by exploiting mechanical deformation of the elastomeric fibrillar structures inspired by geckos. However, control of the interfacial load distribution has been focused on the size of micro-contact with single or a few of micro-/nano-fibers on planar surface, and not for a large contact area on complex three-dimensional (3D) surfaces. This thesis work aims at investigating principles of the interfacial load distribution control in multi-scale, ranging from micro-contact with single micro-fiber to a centimeter-scale contact with a membrane-backed micro-fiber array on non-planar 3D surfaces. The findings are also applied for developing a soft robotic gripper capable of grasping a wide range of complex objects in size, shape, and number, expanding the area of practical applications for bio-inspired adhesives in transfer printing, robotic manipulators, and mobile robots. This paper comprises three main works. First, we investigate the effect of tip-shapes on the interfacial load sharing of mushroom-shaped micro-fibrillar adhesives with precisely defined tipgeometries using high resolution 3D nano-fabrication technique. For a large area of non-planar contact interface, we fabricate fibrillar adhesives on a membrane (FAM) by integrating micro-fibers with a soft backing, which enables robust and controllable adhesion on 3D surfaces. Picking and releasing mechanism for the maximal controllability in adhesion are discussed. Finally, we propose a soft robotic architecture which can control the interfacial load distribution for the FAM on 3D surfaces, solving an inherit dilemma between conformability and high fracture strength with the equal load sharing on complex non-planar 3D surfaces.

[1]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[2]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  P. Papadopoulos,et al.  Magnetically actuated micropatterns for switchable wettability. , 2014, ACS applied materials & interfaces.

[4]  Heinrich M. Jaeger,et al.  JSEL: Jamming Skin Enabled Locomotion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  E. Arzt,et al.  The effect of shape on the adhesion of fibrillar surfaces. , 2008, Acta biomaterialia.

[6]  Tian Tang,et al.  Can a fibrillar interface be stronger and tougher than a non-fibrillar one? , 2005, Journal of The Royal Society Interface.

[7]  M. Sitti,et al.  Effect of retraction speed on adhesion of elastomer fibrillar structures , 2012 .

[8]  M. Sitti,et al.  Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays , 2008 .

[9]  M. Sitti,et al.  The effect of aspect ratio on adhesion and stiffness for soft elastic fibres , 2011, Journal of The Royal Society Interface.

[10]  Metin Sitti,et al.  Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot using Fibrillar Adhesives , 2011, Int. J. Robotics Res..

[11]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[12]  Tony J. Dodd,et al.  Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes , 2010 .

[13]  Metin Sitti,et al.  Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  Heinrich M. Jaeger,et al.  A Positive Pressure Universal Gripper Based on the Jamming of Granular Material , 2012, IEEE Transactions on Robotics.

[15]  D. Maugis Contact, Adhesion and Rupture of Elastic Solids , 2000 .

[16]  Metin Sitti,et al.  Enhanced friction of elastomer microfiber adhesives with spatulate tips , 2007 .

[17]  Metin Sitti,et al.  Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[18]  Metin Sitti,et al.  Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives , 2006 .

[19]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[20]  Tomokazu Takahashi,et al.  Flexible vacuum gripper with autonomous switchable valves , 2013, 2013 IEEE International Conference on Robotics and Automation.

[21]  K. Suh,et al.  Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system. , 2013, Nanoscale.

[22]  B. N. J. Perssona On the mechanism of adhesion in biological systems , 2003 .

[23]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[24]  Metin Sitti,et al.  Adhesion of biologically inspired vertical and angled polymer microfiber arrays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[25]  Sanlin S. Robinson,et al.  Poroelastic Foams for Simple Fabrication of Complex Soft Robots , 2015, Advanced materials.

[26]  R. Fearing,et al.  Analysis of Shaft-Loaded Membrane Delamination Using Stationary Principles , 2008 .

[27]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures as dry adhesives , 2003 .

[28]  Chung-Yuen Hui,et al.  Biologically inspired crack trapping for enhanced adhesion , 2007, Proceedings of the National Academy of Sciences.

[29]  R. Fearing,et al.  Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[30]  Dirk-Michael Drotlef,et al.  Magnetically Actuated Patterns for Bioinspired Reversible Adhesion (Dry and Wet) , 2014, Advanced materials.

[31]  An Adhesion Paradox , 1973 .

[32]  Metin Sitti,et al.  Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing , 2010, Proceedings of the National Academy of Sciences.

[33]  Mark R. Cutkosky,et al.  Grasping without squeezing: Shear adhesion gripper with fibrillar thin film , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Mark R. Cutkosky,et al.  Smooth Vertical Surface Climbing With Directional Adhesion , 2008, IEEE Transactions on Robotics.

[35]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Huanyu Cheng,et al.  Elastomer Surfaces with Directionally Dependent Adhesion Strength and Their Use in Transfer Printing with Continuous Roll‐to‐Roll Applications , 2012, Advanced materials.

[37]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[38]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[39]  A. Jagota,et al.  Effect of rate on adhesion and static friction of a film-terminated fibrillar interface. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[40]  Metin Sitti,et al.  Soft Grippers Using Micro‐fibrillar Adhesives for Transfer Printing , 2014, Advanced materials.

[41]  Alexander K. Epstein,et al.  Fabrication of Bioinspired Actuated Nanostructures with Arbitrary Geometry and Stiffness , 2009 .

[42]  Hyunhyub Ko,et al.  Octopus‐Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes , 2016, Advanced materials.

[43]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[44]  Kahp Y. Suh,et al.  Stooped Nanohairs: Geometry‐Controllable, Unidirectional, Reversible, and Robust Gecko‐like Dry Adhesive , 2009 .

[45]  Mark R Cutkosky,et al.  Human climbing with efficiently scaled gecko-inspired dry adhesives , 2015, Journal of The Royal Society Interface.

[46]  G. Carbone,et al.  Sticky bio-inspired micropillars: finding the best shape. , 2012, Small.

[47]  Metin Sitti,et al.  Gecko-inspired controllable adhesive structures applied to micromanipulation , 2012 .

[48]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[49]  M. C. Tracey,et al.  Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering , 2014 .

[50]  Metin Sitti,et al.  Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot , 2012, IEEE Transactions on Robotics.

[51]  Lukas Stepien,et al.  Insights into the Adhesive Mechanisms of Tree Frogs using Artificial Mimics , 2013 .

[52]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  Kellar Autumn,et al.  Properties, Principles, and Parameters of the Gecko Adhesive System , 2006 .

[54]  Ronald S. Fearing,et al.  Controllable Particle Adhesion with a Magnetically Actuated Synthetic Gecko Adhesive , 2013 .

[55]  M. Sitti,et al.  The optimal shape of elastomer mushroom-like fibers for high and robust adhesion , 2014, Beilstein journal of nanotechnology.

[56]  Yu Tian,et al.  Adhesion and friction in gecko toe attachment and detachment , 2006, Proceedings of the National Academy of Sciences.

[57]  Metin Sitti,et al.  Tankbot: A Palm-size, Tank-like Climbing Robot using Soft Elastomer Adhesive Treads , 2010, Int. J. Robotics Res..

[58]  R. Fearing,et al.  Directional adhesion of gecko-inspired angled microfiber arrays , 2008 .

[59]  K. Suh,et al.  A nontransferring dry adhesive with hierarchical polymer nanohairs , 2009, Proceedings of the National Academy of Sciences.

[60]  Yu Tian,et al.  Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive System , 2007 .

[61]  Metin Sitti,et al.  Staying sticky: contact self-cleaning of gecko-inspired adhesives , 2014, Journal of The Royal Society Interface.

[62]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[63]  Metin Sitti,et al.  Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope , 2012, IEEE Transactions on Robotics.

[64]  David Labonte,et al.  Scaling and biomechanics of surface attachment in climbing animals , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  Karl Iagnemma,et al.  Design and Analysis of a Robust, Low-cost, Highly Articulated manipulator enabled by jamming of granular media , 2012, 2012 IEEE International Conference on Robotics and Automation.

[66]  Martin H. Sadd,et al.  Elasticity: Theory, Applications, and Numerics , 2004 .

[67]  Carlo Menon,et al.  Controllable biomimetic adhesion using embedded phase change material , 2010 .

[68]  M. Meyyappan,et al.  Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive , 2006 .

[69]  Anand Jagota,et al.  Mechanics of Adhesion Through a Fibrillar Microstructure1 , 2002, Integrative and comparative biology.

[70]  Yu Tian,et al.  Bridging nanocontacts to macroscale gecko adhesion by sliding soft lamellar skin supported setal array , 2013, Scientific Reports.

[71]  Karl Iagnemma,et al.  A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery , 2014, IEEE Transactions on Robotics.

[72]  Duncan J. Irschick,et al.  Looking Beyond Fibrillar Features to Scale Gecko‐Like Adhesion , 2012, Advanced materials.

[73]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[74]  M. Sitti,et al.  Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives , 2007, IEEE/ASME Transactions on Mechatronics.

[75]  Giuseppe Carbone,et al.  Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces , 2011 .

[76]  M. Sitti,et al.  Gecko-inspired directional and controllable adhesion. , 2008, Small.

[77]  Ming Zhou,et al.  Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. , 2013, ACS applied materials & interfaces.

[78]  K. Wan Adherence of an Axisymmetric Flat Punch Onto a Clamped Circular Plate: Transition From a Rigid Plate to a Flexible Membrane , 2002 .

[79]  Seok Kim,et al.  Micro-wedge array surface of a shape memory polymer as a reversible dry adhesive , 2016 .

[80]  Carmel Majidi,et al.  Rigidity-tuning conductive elastomer , 2015 .

[81]  Metin Sitti,et al.  Actively controlled fibrillar friction surfaces , 2015 .

[82]  Alexander K. Epstein,et al.  Steering nanofibers: An integrative approach to bio-inspired fiber fabrication and assembly , 2012 .

[83]  Huajian Gao,et al.  Shape insensitive optimal adhesion of nanoscale fibrillar structures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Moon Kyu Kwak,et al.  Stretchable, adhesion-tunable dry adhesive by surface wrinkling. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[85]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[86]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .

[87]  Matt Wilkinson,et al.  Frictional and elastic energy in gecko adhesive detachment , 2007, Journal of The Royal Society Interface.

[88]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[89]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[90]  C Majidi,et al.  Effective elastic modulus of isolated gecko setal arrays , 2006, Journal of Experimental Biology.

[91]  Metin Sitti,et al.  Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion. , 2016 .

[92]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[93]  Experimental Investigation of Optimal Adhesion of Mushroomlike Elastomer Microfibrillar Adhesives. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[94]  Metin Sitti,et al.  Reversible dry micro-fibrillar adhesives with thermally controllable adhesion , 2009 .

[95]  Yu Tian,et al.  Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics , 2015, Nature Communications.

[96]  Carmel Majidi,et al.  Soft-matter composites with electrically tunable elastic rigidity , 2013 .

[97]  K. Shull,et al.  Deformation and adhesive contact of elastomeric membranes , 2007 .

[98]  Mark R. Cutkosky,et al.  Perching and vertical climbing: Design of a multimodal robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[99]  Metin Sitti,et al.  Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces , 2017, Proceedings of the National Academy of Sciences.

[100]  N. Rizzo,et al.  Characterization of the structure and composition of gecko adhesive setae , 2006, Journal of The Royal Society Interface.

[101]  Stanislav N. Gorb,et al.  Biologically Inspired Mushroom-Shaped Adhesive Microstructures , 2014 .

[102]  R. Ogden,et al.  Application of variational principles to the axial extension of a circular cylindical nonlinearly elastic membrane , 2000 .

[103]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[104]  Metin Sitti,et al.  Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips , 2007 .

[105]  Metin Sitti,et al.  GeckoGripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[106]  D. Floreano,et al.  Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators , 2016, Advanced materials.

[107]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.