Internalizing labelled deduction

This paper shows how to internalize the Kripke satisfaction definition using the basic hybrid language , and explores the proof theoretic consequences of doing so. The basic hybrid language enables the transfer of classic Gabbay-style labelled deduction methods from the metalanguage to the object language, and the logical handling of labelling discipline. This internalized approach to labelled deduction links neatly with the Gabbay-style rules now widely used in modal Hilbert-systems, enables completeness results for a wide range of first-order definable frame classes to be obtained automatically, and extends to many richer languages. The paper discusses related work by Jerry Seligman and Miroslava Tzakova and concludes with some reflections on the status of labelling in modal logic.

[1]  Valentin Goranko,et al.  Hierarchies of modal and temporal logics with reference pointers , 1996, J. Log. Lang. Inf..

[2]  J. Seligman The Logic of Correct Description , 1997 .

[3]  Francesco M. Donini,et al.  Reasoning in description logics , 1997 .

[4]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[5]  Tinko Tinchev,et al.  An Essay in Combinatory Dynamic Logic , 1991, Inf. Comput..

[6]  Patrick Blackburn,et al.  Hybrid Languages and Temporal Logic , 1999, Log. J. IGPL.

[7]  Stéphane Demri,et al.  Cut-Free Display Calculi for Nominal Tense Logics , 1999, TABLEAUX.

[8]  Tinko Tinchev,et al.  Quantifiers in combinatory PDL: completeness, definability, incompleteness , 1985, FCT.

[9]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[10]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[11]  Patrick Blackburn,et al.  Hybrid Languages and Temporal Logic (Full Version) , 1998 .

[12]  Steven K. Thomason,et al.  Semantic analysis of tense logics , 1972, Journal of Symbolic Logic.

[13]  Valentin Goranko,et al.  Temporal Logic with Reference Pointers , 1994, ICTL.

[14]  George Gargov,et al.  Determinism and Looping in Combinatory PDL , 1988, Theor. Comput. Sci..

[15]  Rudolf Carnap Modalities and Quantification , 1946, J. Symb. Log..

[16]  Valentin Goranko,et al.  Modal logic with names , 1993, J. Philos. Log..

[17]  A. Ivanov,et al.  Modal Environment for Boolean Speculations (preliminary Report) , 1986 .

[18]  Per F. V. Hasle Building a Temporal Logic for Natural Language Understanding with the HOL-system , 1991, Natural Language Understanding and Logic Programming Workshop.

[19]  Patrick Blackburn Nominal tense logic and other sorted intensional frameworks , 1990 .

[20]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[21]  Patrick Blackburn,et al.  Hybrid languages , 1995, J. Log. Lang. Inf..

[22]  Patrick Blackburn,et al.  Hybrid Completeness , 1998, Log. J. IGPL.

[23]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[24]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .

[25]  Miroslava Tzakova,et al.  Tableau Calculi for Hybrid Logics , 1999, TABLEAUX.

[26]  J. Seligman A Cut-free Sequent Calculus for Elementary Situated Reasoning , 1991 .

[27]  Ian A. Mason,et al.  Metamathematics of Contexts , 1995, Fundam. Informaticae.

[28]  Gert Smolka,et al.  Feature-Constraint Logics for Unification Grammars , 1989, J. Log. Program..

[29]  Stéphane Demri,et al.  Sequent Calculi for Nominal Tense Logics: A Step Towards Mechanization? , 1999, TABLEAUX.

[30]  Beata Konikowska,et al.  A Logic for Reasoning about Relative Similarity , 1997, Stud Logica.

[31]  Patrick Blackburn,et al.  Nominal Tense Logic , 1992, Notre Dame J. Formal Log..

[32]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.